$K^- p$ elastic scattering at 3 GeV/c

Focacci, M.N. ; Focardi, S. ; Giacomelli, G. ; et al.
Phys.Lett. 19 (1965) 441-444, 1965.
Inspire Record 851194 DOI 10.17182/hepdata.30175

None

2 data tables

No description provided.

Only statistical errors are given.


Production and Decays of K^*(1410) in 3.0 GeV/c K$^-$ p Interactions

Focardi, S. ; Minguzzi-Ranzi, A. ; Serra, P. ; et al.
Phys.Lett. 16 (1965) 351-354, 1965.
Inspire Record 49812 DOI 10.17182/hepdata.30377

None

1 data table

No description provided.


LARGE ANGLE pi- p ELASTIC SCATTERING AT 3.63-GeV/c.

Perl, Martin L. ; Lee, Yong Yung ; Marquit, Erwin ;
Phys.Rev. 138 (1965) B707-711, 1965.
Inspire Record 98 DOI 10.17182/hepdata.26685

The differential cross section for elastic scattering of 3.63−GeVc π− mesons on protons was studied with a hydrogen bubble chamber, the emphasis being on large-angle scattering. From 90 to 180° in the barycentric system, the cross section is roughly flat with an average value of 2.7±1.0 μb/sr. Near and at 180°, there may be a slight peak of magnitude 10±6 μb/sr. But if such a peak exists, it is only one-third to one-fourth the size of the 180° peak found in 4.0 GeVc π++p elastic scattering. In addition to comparison with other π−+p and π++p large-angle elastic-scattering measurements, this measurement is compared with large-angle p+p elastic scattering. In the forward hemisphere a small peak or a plateau exists at cos θ*=+0.60. This appears to be a second diffraction maximum such as has been found in lower-energy π+p elastic scattering. A survey of indications of such a second diffraction maximum in other π+p measurements shows that it always occurs in the vicinity of −t=1.2 (GeVc)2, where t is the square of the four-momentum transfer. As the incident momentum increases, the relative size of this second maximum decreases.

2 data tables

No description provided.

No description provided.


Pion-Proton Elastic Scattering from 3 GeV/c to 5 GeV/c

Perl, M.L. ; Jones, Lawrence W. ; Ting, C.C. ;
Phys.Rev. 132 (1963) 1252-1272, 1963.
Inspire Record 46758 DOI 10.17182/hepdata.600

Results of a spark chamber experiment on elastic scattering of pions on protons are presented and analyzed. The processes studied were π+p at 2.92 GeV/c, and π−p at 3.15, 4.13, and 4.95 GeV/c. The data are fitted to an exponential function of the four-momentum transfer, t, in several different ways in attempts to explore systematic energy and angular dependences. No shrinkage of the diffraction peak is seen in comparing the coefficients of a linear exponential fit for |t|<0.4 (GeV/c)2; at larger |t|, however, the cross section falls off with increasing energy. The large-angle differential cross section is examined for structure and is compared with all other large angle scattering data. The results are compared with proton-proton scattering data over the same energy range and substantial differences between the two processes are evident.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic scattering of negative pions by protons at 2 BeV/c

Damouth, David E. ; Jones, L.W. ; Perl, M.L. ;
Tech.Rep.11, 1963.
Inspire Record 1407276 DOI 10.17182/hepdata.163

None

2 data tables

No description provided.

No description provided.