Evidence is presented for a narrow state, called ξ, in the decay modes J/ψ→γξ, ξ→K+K−, and ξ→KS0KS0. In the K+K− mode, the ξ has a mass of 2.230±0.006±0.014 GeV/c2, a width of Γ=0.026−0.016+0.020± 0.017 GeV/c2, a product branching ratio of (4.2−1.4+1.7±0.8)×10 −5, and a statistical significance of ∼4.5 standard deviations. In the KS0KS0 mode, it has a mass of 2.232±0.007±0.007 GeV/c2, a width of Γ=0.018−0.015+0.023± 0.010 GeV/c2, a product branching ratio of (3.1−1.3+1.6±0.7)×10 −5, and a statistical significance of ∼3.6 standard deviations. Limits on ξ decay to other final states are presented.
No description provided.
We present measurements of the differential cross section for the production of massive muon pairs in 225-GeV/c π−-nucleus collisions. We have used the data between the ψ and ϒ resonances in the framework of the Drell-Yan quark-antiquark annihilation model to predict the behavior of the cross section in the high-mass (mμμ>11 GeV/c2) region. The data are consistent with this extrapolation provided that a QCD leading-logarithmic evolution is included in the structure functions.
No description provided.
No description provided.
We have measured the reaction γγ → π + π − π 0 using the PLUTO detector at PETRA. A pronounced enhancement is seen in the π + π − π 0 mass distribution corresponding to the A 2 meson. The event configuration in this enhancement favors a 2 + spin-parity assignment. The value of Γ γγ =1.06 ±0.18±0.19 keV obtained for the two-photon decay width of the A 2 agrees with previous measurements and with quark model predictions.
No description provided.
The reaction e + e − →e + e − η ′(958) has been observed by detecting the final state π + π − γ . The two-photon width of the η′ has been measured to be Γ ( η ′→ γγ ) = 5.1±0.4±0.7 keV. A search for the ι (1440) has been made in the ϱ 0 γ final state. An upper limit has been obtained for the product Γ ( ι (1440) → γ ) gg ), B ( ι → ϱ 0 γ ) < 1.5 keV (95%CL).
No description provided.
We observe γγ → η′ production in the reaction e + e − → e + e − π + π − γ. We measure the product γ γγ ( η ′) B ( η ′ → ϱ 0 γ ) to be 1.14 ± 0.08 ± 0.11 keV. A first measurement of the γγ → η′ transition form factor is made for Q 2 up to 1 GeV 2 .
No description provided.
The production of very large transverse momentum hadron jets has been measured in the UA2 experiment at the CERN p p Collider for s = 540 GeV using a highly segmented calorimeter. The range of previously available cross sections for inclusive jet production is extended to p T = 150 GeV and the two-jet invariant mass distribution to m jj = 280 GeV with the largely increased data sample collected during the 1983 running period. The results are compared with the predictions of QCD models.
LISTED ERRORS INCLUDE STATISTICAL AND THE PT-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
LISTED ERRORS INCLUDE STATISTICAL AND THE M-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.
No description provided.
No description provided.
No description provided.
The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.
No description provided.
RAW CROSS SECTION WITHIN MASS CUTS.
No description provided.
We have measured the production of one and two large transverse momentum hadrons in p p and pp interactions in the range 2 < p T < 6 GeV/ c for the central rapidity region |y| < 0.9 at s = 63 and 31 GeV . No statistically significant difference between p p and pp collisions is observed. The results are in accordance with lowest order QCS perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark of quark-fusion subprocesses in this kinematic range.
No description provided.
No description provided.
We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back π 0 's of high transverse momentum ( p T ) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy √ s of the proton-proton collision. The cross-sections d σ d m at the values of √ s satisfy a scaling law of the form d σ d m = G(x) m n , where x = m(π 0 , π 0 )//trs and n = 6.5 ± 0.5 . We show from our data that the leading π 0 carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.
No description provided.