We report on a study ofρ0 andf2 inclusive production in π−−p interactions at 360 GeV/c, using the LEBC-EHS set-up at CERN and reconstructing about 165000 events. Theρ0,f2 andρ30 cross sections are determined forxF>0,xF>0.4 andxF>0.6 respectively and theρ0 andf2 Feynman-x distributions and transverse momentum distributions are presented.
No description provided.
None
No description provided.
No description provided.
No description provided.
The reaction γγ → 2 π + 2 π − π 0 has been studied using the the ARGUS detector at the e + e − storage ring DORIS II at DESY. The production of the vector-meson pair ωϱ 0 is observed for the first time. The cross section for γγ → ωϱ 0 and the topological cross section for γγ → 2 π + 2 π − π 0 are given. The angular distribution in ωϱ 0 events do not indicate any specific dominant spin-parity; they are consistent with isotropic production and decay of the ω and ϱ 0 mesons over the available W γγ range.
Topological cross section.
OMEGA RHO0 Production cross section.
The reaction γγ → 2 π + 2 π − 2 π 0 has been studied using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of ω mesons is observed and, in particular, the reaction γγ → ωω is seen for the first time. The cross section for γγ → ωω has an enhancement at ∼ 1.9 GeV/ c 2 of about 10 nb. The cross sections for γγ → 2 π + 2 π − 2 π 0 and γγ → ωπ + π − π 0 are also given.
Topological cross section. 14 pct systematic uncertainty not included.
Cross section for (omega omega) production. Additional 25 pct systematic error not included.
Cross section for (omega pi+ pi- pi0) where (omega omega) events have been removed. Additional 15 pct systematic error not included.
A measurement of the total cross section for the reaction p p → π + π − has been performed for seven values of the incident momentum between 158 and 275 MeV/ c . The values obtained, if compared with previous results at higher momenta, agree with a 1/ß dependence. The differential cross section sssumed over the whole incident momentum range has also been measured and the result of a fit by Legendre polynomials is given.
No description provided.
No description provided.
4*PI*LEG(L=0,P=4) = 1.07 +- 0.13 mb.
We have measured the W transverse momentum distribution ( p T W ) using a sample of 323 W → eν and W → μν events produced in proton-antiproton collisions at the CERN collider. In the present letter we extend the study of the distribution up to p T W ∼- m W and compare to leading and higher order QCD. This comparison is a precise test of QCD with hadron colliders and the inclusive spectrum gives good agreement over a large range of p T W . However we observed two events at very large p T W (∼- 100 GeV/ c ) in which the W candidate recoils against an energetic di-jet system. Both events have a very large missing transverse energy and a jet-jet mass compatible with the W mass. In a separate analysis, a topologically similar event has been observed in which a high-mass di-jet system is balanced by a large missing transverse energy which could be interpreted as Z 0 → ν ν decay. We cannot easily explain these three events in terms of explicit second-order QCD calculations. However we cannot exclude at this stage the possibility that they are the result of non-gaussian fluctuations in the response of UA1 calorimetry or a statistical fluctuation in the data.
THESE NUMBERS WRE READ OFF FIG 1A.
We compare the differential cross sections of high-mass muon pair production on deuterium and tungsten by incident negative pions of 140 and 286 GeV. We find an indication of a nuclear effect on the nucleon quark distributions comparable in magnitude to what is observed in muon-iron deep inelastic scattering, whereas the pion-quark distribution is unaffected, compatibly with QCD factorization.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.