Date

Measurement of the Neutral Current Interactions of High-Energy Neutrinos and anti-neutrinos

Wanderer, P. ; Benvenuti, A. ; Cline, D. ; et al.
Phys.Rev.D 17 (1978) 1679, 1978.
Inspire Record 120154 DOI 10.17182/hepdata.24428

Measurements of the ν and ν¯ weak hadronic neutral-current total cross sections and hadron energy distributions are consistent with a V−A form for this current. They are three standard deviations from pure V, pure A, or a pure T form and unambiguously exclude V+A and any linear combination of S and P.

2 data tables

DATA FOR VARIOUS BEAM FOCUSING.

No description provided.


Structure Functions and Charge Ratios in Muon Nucleon Scattering

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 17 (1978) 2843, 1978.
Inspire Record 120025 DOI 10.17182/hepdata.24430

We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8<W<4.5 GeV and a virtual-photon mass-squared range 0.5≤Q2≤4.5 GeV2 indicate an overall equality of summed structure functions for neutron and proton targets, which exhibit approximate independence of Q2 and ω′, Implications in terms of quark-fragmentation ideas are discussed.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Energy and Momentum Distributions of Muoproduced Hadrons

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 15 (1977) 2425, 1977.
Inspire Record 109678 DOI 10.17182/hepdata.24649

We present inclusive distributions for final-state hadrons produced in inelastic muon-proton scattering. Over the total energy range 2<W<4.7 GeV and the momentum-transfer range 0.3<Q2<4.5 GeV2, the fractional momentum and energy distributions approximately scale. Distributions in transverse momentum display an interesting two-component behavior. They show no dependence on the virtual-photon "mass squared" Q2, and have average values typical of other hadron-initiated reactions. A comparison of our distributions with those seen in e+e− annihilation and neutrino-nucleon scattering shows agreement, in support of quark-parton fragmentation ideas. We further break these distributions down by event topology.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of the Neutral to Charged Current Inclusive Cross-Section Ratio for Neutrino and anti-neutrino Interactions in the Gargamelle Experiment

The Gargamelle Neutrino collaboration Blietschau, J. ; Deden, H. ; Hasert, F.J. ; et al.
Nucl.Phys.B 118 (1977) 218-236, 1977.
Inspire Record 110123 DOI 10.17182/hepdata.35596

None

2 data tables

No description provided.

No description provided.


Inelastic Muon-Proton Scattering: Multiplicity Distributions, and Prong Cross-Sections

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 13 (1976) 2934, 1976.
Inspire Record 108053 DOI 10.17182/hepdata.24754

In a streamer-chamber experiment at the Stanford Linear Accelerator Center, we observed hadron production in inelastic collisions of 14-GeV positive muons in a liquid hydrogen target. We report on the experiment, the analysis, and the resulting cross sections for hadronic prongs as well as the charged-hadron multiplicity distributions.

2 data tables

No description provided.

No description provided.


Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Muon-Deuterium Deep Inelastic Scattering

Kim, I.J. ; Entenberg, A. ; Jostlein, H. ; et al.
Phys.Rev.Lett. 33 (1974) 551, 1974.
Inspire Record 1427 DOI 10.17182/hepdata.21238

We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.

1 data table

No description provided.


Measurement of Rates for Muonless Deep Inelastic Neutrino and anti-neutrino Interactions

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1457, 1974.
Inspire Record 1123 DOI 10.17182/hepdata.21890

Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.

1 data table

No description provided.


Further observation of muonless neutrino-induced inelastic interactions.

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1454-1457, 1974.
Inspire Record 882 DOI 10.17182/hepdata.21934

We report here additional positive results of a search for muonless neutrino- and anti-neutrino-induced events using an enriched antineutrino beam and a muon identifier of relatively high geometric detection efficiency. The ratio of muonless to muon event rates is observed to be R=0.20±0.05. We observe no background derived from ordinary neutrino or antineutrino interactions that is capable of explaining the muonless signal.

1 data table

No description provided.


High-Energy Single-Arm Inelastic e - p and e - d Scattering at 6-Degrees and 10-Degrees

Poucher, J.S. ; Breidenbach, Martin ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 32 (1974) 118, 1974.
Inspire Record 81157 DOI 10.17182/hepdata.3374

Differential cross sections for electron scattering from hydrogen and deuterium in the deep-inelastic region show that the neutron cross section is significantly smaller than the proton cross section over a large part of the kinematic region studied. Although νW2d differs in magnitude from νW2p, it exhibits a similar scaling behavior.

3 data tables

No description provided.

No description provided.

No description provided.