Date

pi- p and K- p Elastic Scattering at 6.2-GeV/c

Buran, T. ; Eide, A. ; Helgaker, P. ; et al.
Nucl.Phys.B 111 (1976) 1-19, 1976.
Inspire Record 108747 DOI 10.17182/hepdata.35657

Data on 6.2 GeV/ c π − p and K − p elastic scattering cross sections are presented in the range 0.3 < − t < 10.7 (GeV/ c ) 2 .

2 data tables

No description provided.

No description provided.


The Reactions K+ p --> Lambda x++ and K+ p --> anti-Lambda x++ at Incident Momenta of 8.2-GeV/c and 16.0-GeV/c

Chliapnikov, P.V. ; Ciapetti, G. ; Dunwoodie, W. ; et al.
Nucl.Phys.B 112 (1976) 1-51, 1976.
Inspire Record 109100 DOI 10.17182/hepdata.35646

Inclusive production of Λ and Λ in K + p interactions is studied at incident momenta of 8.2 and 16.0 GeV/ c . Cross sections and single-particle distributions are presented, the correlation between longitudinal and transverse momentum is investigated, and the dependence of average charge multiplicity on missing mass measured. For Λ production, early scaling is observed in the target fragmentation region when the data are presented in terms of ( M 2 - M th 2 )/ s and t , where M th is the threshold value of the missing mass M . Furthermore, a triple-Regge analysis in these variable yields an effective exchange trajectory which passes through the K, Q and L mesons. There is evidence for beam fragmentation in Λ and Λ production, but the contributions seem not to be dominant in the fragmentation region. Nevertheless, the parameter values in a triple-Regge description are estimated, and together with those for target fragmentation in Λ production, provide a complete description of the fragmentation contributions to the two reactions. Integration of the resultant distribution functions over the complete Chew-Low plot yields fragmentation cross sections increasing approximately as log s ; in addition the observed features of the x , p L and p T 2 projections and of the p L - p T correlation are well-described in the fragmentation regions. Central production contributions are isolated by subtracting the calculated fragmentation distributions

20 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization in Elastic Scattering of pi+, K+ Mesons and Protons on Protons at 45-GeV/c

The Serpukhov-Saclay-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Sov.J.Nucl.Phys. 25 (1977) 198, 1977.
Inspire Record 108993 DOI 10.17182/hepdata.19052
1 data table

No description provided.


Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…

Large t Elastic Proton Proton Scattering at s**(1/2) = 53-GeV

de Kerret, H. ; Nagy, E. ; Regler, M. ; et al.
Phys.Lett.B 62 (1976) 363-365, 1976.
Inspire Record 108743 DOI 10.17182/hepdata.27660

New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .

1 data table

Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).


A Measurement of the Cross-Section of the Reaction p p --> n Delta++ (1232) at ISR Energies

Kwak, N. ; Nagy, E. ; Regler, M. ; et al.
Phys.Lett.B 62 (1976) 359-362, 1976.
Inspire Record 108757 DOI 10.17182/hepdata.27678

A measurement of the cross section of the charge-exchange reaction pp→ Δ ++ (1232)n at √ s = 23, 31 and 45 GeV at the CERN-ISR is reported. The energy dependence continues to follow a power law p lab − n with n = 1.94 ± 0.03 indicating dominance of one-pion exchange at the lowest ISR energy; there is some evidence for deviation from this at the higher ISR energies.

3 data tables

No description provided.

No description provided.

No description provided.


On Measuring the Spin Rotation Parameter in Elastic p p and pi+ p Scattering at 45-GeV/c

Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Yad.Fiz. 24 (1976) 762-765, 1976.
Inspire Record 108609 DOI 10.17182/hepdata.19050

None

1 data table

No description provided.


A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


Measurement of the Total and Partial anti-p p Cross-Section Between 1901-MeV and 1950-MeV

The CERN-Liverpool-Mons-Padua-Rome-Trieste collaboration Chaloupka, V. ; Drevermann, H. ; Marzano, F. ; et al.
Phys.Lett.B 61 (1976) 487-492, 1976.
Inspire Record 108895 DOI 10.17182/hepdata.27669

The presence of a structure in the p̄p total cross section at 1930–1940 MeV, with a narrow width of 9 MeV is confirmed. The interpretation of the effect as a single, non interfering, resonance is made difficult by the comparison of the elastic scattering with the charge exchange cross sections.

1 data table

'INELASTIC' IS 0+2+4+6 PRONGS MINUS ELASTIC.


anti-Proton-Proton Annihilations Between 1.5-GeV/c and 2.0-GeV/c: Final States with at Least One K0(L) Meson

Vuillemin, V. ; Gailloud, M. ; Rosselet, P. ; et al.
Nuovo Cim.A 33 (1976) 133, 1976.
Inspire Record 3307 DOI 10.17182/hepdata.37675

Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.

9 data tables

RESONANCE FRACTIONS FOR AP P --> KS (K+ PI- + K- PI+).

RESONANCE FRACTIONS FOR AP P --> KS (K+ PI- + K- PI+) PI0.

RESONANCE FRACTIONS FOR AP P --> KS KS PI+ PI-.

More…