The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident-neutron momenta between 8 and 30 GeV/c. The experiment was a spark-chamber-counter experiment, conducted at the alternating-gradient synchrotron. Results are presented and compared with currently available lower energy np data and comparable energy pp data.
No description provided.
We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.
The production of enutral kaons in e + e − annihilation has been measured for c.m. energies between 3.4 GeV and 7.6 GeV. Near 4 GeV the inclusive K S cross section shows an increase and structure similar to total hadron production. Roughly 40–45% of all hadronic final states contain kaons, except at 4.028 GeV and 4.415 GeV, where a significantly larger kaon fraction is observed.
No description provided.
THIS IS TWICE THE MEASURED KS CROSS SECTION. THE ERRORS ARE STATISTICAL ONLY. THERE IS 15 PCT ABSOLUTE NORMALIZATION ERROR, PLUS POSSIBLY SOME ENERGY DEPENDENT ERROR. THE DATA ARE NOT EQUALLY SPACED IN THE ENERGY INTERVALS.
Two-photon interactions have been studied with the SLAC-LBL Mark II magnetic detector at SPEAR. The cross section for η′ production by the reaction e+e−→e+e−η′ has been measured at beam energies from 2.0 to 3.7 GeV. The radiative width Γγγ(η′) has been determined to be 5.8±1.1 keV (±20% systematic uncertainty). Upper limits on the radiative widths of the f(1270), A2(1310), and f′(1515) tensor mesons have been determined. A search has been made for production of the E(1420) by γγ collisions, but no signal is observed.
No description provided.
NO SIGNAL ABOVE BACKGROUND SEEN. UPPER LIMITS AT 95 PCT CL GIVEN.
We report a measurement of the cross section for the process γγ → π + π − at invariant masses 500 MeV/ c 2 < m ππ <2000 MeV/ c 2 . A value for the radiative width of the f(1270) tensor meson Γ f→ γγ = 3.6 ± 0.3 ± 0.5 KeV (helicity λ = 2) has been obtained from a fit to the observed ππ mass spectrum.
DATA REQUESTED FROM AUTHORS.
A peak in the pK−π+ and p¯K+π− invariant-mass spectra at 2.285±0.006 GeV/c2 is observed, which is associated with the lowest-lying charmed baryon (Λc). A cross section times branching ratio of 0.037±0.012 nb at Ec.m.=5.2 GeV is measured with a substantial fraction of the events produced with an equal recoiling mass. New measurements of inclusive p and Λ cross sections are also presented, allowing an estimate of the branching ratio B(Λc→pK−π+)=0.022±0.010.
THE TOTAL INCLUSIVE CHARMED LAMBDA CROSS SECTION IS DERIVED FROM THE OBSERVED PRODUCTION RATE VIA THE <P K- PI+> CHANNEL USING THE STEP IN INCLUSIVE PROTON PRODUCTION AT THE CHARMED-BARYON THRESHOLD AND REASONABLE ASSUMPTIONS. THE BRANCHING RATIO (LAMBDA/C+ --> P K- PI+) IS THEN 2.2 +- 1.0 PCT.
EACH BARYON PAIR PRODUCED IS OF COURSE COUNTED TWICE IN THIS CROSS SECTION.
We have found events of the form e++e−→e±+μ∓+missingenergy, in which no other charged particles or photons are detected. Most of these events are detected at or above a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.
X IN RE INCLUDES TWO OR MORE UNDETECTED PARTICLES.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
The Mark II detector at SPEAR has been used to study D-meson production in e+e− annihilation at center-of-mass energies between 3.8 and 6.7 GeV. The neutral and charged D mesons are identified from their K∓π± and K∓π±π± decay modes. Measurements of RD and of the inclusive differential cross section s dσdz are presented. The quasi-two-body cross sections σDD¯, σD*D¯, and σD*D¯* are derived from an overall fit to the D recoil spectra. No evidence was found for the associated production of charmed mesons and charmed baryons.
No description provided.
No description provided.
THE DIFFERENTIAL SCALING CROSS SECTION FOR NEUTRAL AND CHARGED D'S. DEFINITION OF Z IS 2*E(P=3)/SQRT(S).
Inclusive Ω− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.014±0.006±0.004 Ω−, Ω¯+ per hadronic event. This is roughly 35 times the Lund-model prediction of 0.0004 Ω−, Ω¯+ per hadronic event, but comparable to the Webber-model prediction of 0.006 Ω−, Ω¯+ per hadronic event. The large rate of Ω− production, compared with production rates for other baryons, and with theoretical predictions based on diquark models, indicates that spin suppression does not hold for Ω− production.