Electron-proton elastic-scattering cross sections have been measured at the Stanford Linear Accelerator Center for four-momentum transfers squared q 2 from 1.0 to 25.0 (GeVc)2. The electric (GEp) and magnetic (GMp) form factors of the proton were not separated, since angular distributions were not measured at each q 2. However, values for GMp were derived assuming various relations between GEp and GMp. Several theoretical models for the behavior of the proton magnetic form factor at high values of q 2 are compared with the data.
No description provided.
No description provided.
No description provided.
Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
Compton-scattering cross sections from hydrogen (γp→γp) and from deuterium have been measured at four-momentum transfer t in the range 0.014<~−t<~0.17 GeV2 and photon energies of 8 and 16 GeV. Fits to our proton data of the form dσdt=AeBt give B≈7.8 GeV−2 and an intercept A which is in agreement with the optical point. Both coherent scattering from deuterons and incoherent scattering from neutrons and protons are seen from deuterium. A small difference between the neutron and proton cross sections is seen, indicating the presence of about a 3% isovector t-channel exchange amplitude in addition to the predominant isoscalar amplitude. The vector-dominance model predicts lower cross sections (by at least 20%) for both the hydrogen and deuterium cases.
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Data on the polarization parameter in pp elastic scattering in the | t |-range from ∼0.1 to ∼ 2.9 (GeV/ c ) 2 and at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in π − p and π + p forward elastic scattering at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
We have measured the asymmetry of the cross section for γp→π+n from a polarized target at 5 and 16 GeV. The range of four-momentum transfer was 0.02<~−t<~1.0 GeV2. The π+ mesons were produced in a polarized butanol target and detected with the Stanford Linear Accelerator Center 20−GeVc spectrometer. A sizable asymmetry was found at both 5 and 16 GeV, a typical value being -0.6 near −t=0.3 GeV2. A small amount of data on the asymmetry of other photoproduction processes was also obtained.
No description provided.
No description provided.
No description provided.
The reactions γA→π±A* have been studied at four-momentum transfers −t<~0.5 GeV2 for seven elements ranging from hydrogen to lead. Exclusion-principle suppression is clearly visible at small-momentum transfer. Neither the A dependence nor the energy dependence of the cross sections agrees with the predictions of the vector-dominance model. The ratio of π−π+ production requires equal spatial distributions for the protons and neutrons in nuclei. Some K+ data are also presented.
No description provided.
No description provided.
No description provided.