The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
We present first measurements of total cross section differences Δσ T and Δσ L for a polarized neutron beam transmitted through a polarized proton target. Measurements were carried out at SATURNE II, at 0.63, 0.88, 0.98 and 1.08 GeV. The results are compared with Δσ L data points deduced from p-d and p-p transmission experiments, and with phase shift analyses predictions. The present results together with the corresponding pp data yield two of the three spin dependent forward scattering amplitudes for isospin I =0.
Statistical errors are statistics and random fluctuations. Systematic error contains uncertainties in beam and target polarizations, hydrogen content of the target, and residual error due to misalignment.
The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Both the np and the pp analyzing powers were measured simultaneously using the SATURNE II polarized deuteron beam at 0.550, 0.725, 0.900 and 1.15 GeV/nucleon. The results for the pp analyzing power coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power is equal to the one for scattering of free polarized neutrons. The np data cover the angular region 90° ≤ θ CM ≤ 125°. Our results for the np analyzing power clarify a discrepancy between earlier data at 0.5 GeV and allow conclusions about the energy dependence of the minimum of polarization at θ CM ⋍ 100° in the region from 0.5 to 0.9 GeV.
No description provided.
No description provided.
No description provided.
We have measured the difference between the pp total cross sections for parallel and antiparallel longitudinal spin states at beam momenta of 2.75, 2.92, 3.25, and 3.48 GeV/c. These results reveal possible new structure in this momentum range.
Data read from graph. Statistical errors only.
The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oonn (pp) and the analyzing power A oono (pp) have been measured in the angular region 45°< θ CM <90° at 0.834, 0.874, 0.934, 0.995 and 1.095 GeV beam kinetic energy using the SATURNE II polarized proton beam incident on the polarized proton target.
No description provided.
No description provided.
No description provided.
Angular distributions of the spin-correlation parameters Asl and All for the reaction pp→π+d have been measured at pion center-of-mass angles 40°≤θπ+*≤130° at incident energies of 500, 650, and 800 MeV. Additional measurements of All were made at 600, 700, and 750 MeV. The results of the experiment are compared with the predictions of several unified coupled-channel calculations and partial-wave analyses. While the latest partial-wave analyses were found to fit the data reasonably well, all except one of the various model predictions not only do not fit the data well, but also tend to be in disagreement with each other. The data show no clear sign of a need for proposed dibaryon resonances.
No description provided.
No description provided.
No description provided.
Final results are presented of the proton-proton elastic-scattering spin parameters CSS=(S,S;0,0) and CLS=(L,S;0,0) for thetac.m.=8°–49° and of CLL=(L,L;0,0) for thetac.m.=8°–90° at 11.75 GeV/c. Comparisons to theoretical models are also made.
No description provided.