We present single inclusive π±, π0 andK± spectra in the forward fragmentation region (x>0.2,pT<1.5 GeV/c) as well as correlations between two charged particles. The data were recorded in an unseparated negative hadron beam at the CERN SPS using a large acceptance forward spectrometer. Our maasurements are compared in detail with several models which emphasise the role of the beam valence quarks in this production process. The connection to measurements at largepT is also investigated.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
p p and pp elastic scattering differential cross sections are presented for momentum transfer 0.6< t <2.1 GeV 2 and √ s = 53 GeV. Measurements were made in the same apparatus at the CERN Intersecting Storage Rings. The p p and pp results are in statistical agreement with one another over the entire t range, although the point at t =1.32 GeV 2 is 1.5 σ above the pp data. The p p points appear to have the same shape as the predictions of Donnachie and Landshoff but are significantly lower in magnitude for 0.9< t <1.5 GeV 2 .
No description provided.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
A detailed account is given of high-precision measurements of the total hadronic cross sections of proton-antiproton and proton-proton interactions at centre-of-mass energies of 30.6, 52.8 and 62.7 GeV. The experiment was performed at the CERN Intersecting Storage Rings (ISR) using the total interaction-rate method, in which additive correction terms for trigger losses were held to less than 6% of the final result. An experimental determination of the vertical beam-displacement scale permitted luminosity-monitor calibrations to be made with high intrinsic accuracy. The overall precision (systematic and statistical errors combined) achieved in the total cross sections was ± 1.1% for proton-antiproton reactions and 0.7% for proton-proton reactions. In the proton-proton case the measurement was the most precise such measurement made at the ISR.
No description provided.
ERRORS CONTAIN BOTH STATISTICS AND SYSTEMATICS.
ERRORS CONTAIN POINT-TO-POINT AND THE ERROR-INDEPENDANT ERRORS.
The reaction γp→ρfast0pπ+π− has been studied with the linearly polarized 20-GeV monochromatic photon beam at the SLAC Hybrid Facility to test the prediction of s-channel helicity conservation in inelastic diffraction for t’<0.4 (GeV/c)2. In a sample of 1934 events from this reaction, the ρ0 decay-angular distributions and spin-density-matrix elements are consistent with s-channel helicity conservation, the π+π− mass shape displays the same skewing as seen in the reaction γp→pπ+π−, and the pπ+π− mass distribution compares well and scales according to the vector dominance model with that produced in π±p→πfast±pπ+π−.
No description provided.
No description provided.
SPIN DENSITY MATRIX ELEMENTS FOR THE DIFFRACTIVE RHO0 MESON FROM STUDY OF THE ANGULAR DISTRIBUTIONS. CORRECTION HAS BEEN MADE FOR THE (20 +- 5) PCT NON DIFFRACTIVE BACKGROUND IN THE FINAL DATA SAMPLE, ASSUMING IT TO HAVE AN ISOTOPIC ANGULAR DISTRIBUTION.
We have measured the coherent nuclear production of low-mass K+ω systems in K+A collisions at 202.5 GeV. Results for carbon, copper, and lead targets are similar to those found for π+π+π− production in π+A reactions at the same energy.
M(K+ OMEGA) < 1.5 GEV.
Inclusive particle production cross-sections have been measured at the\(Sp\bar pS\) collider using the UA2 detector in various ranges of transverse momentum (PT) and pseudo-rapidity (η). Cross-section measurements are presented forπ0 production (PT≦15 GeV/c, |η|≦0.85 andPT≦40 GeV/c, 1.0≦|η|≦1.8), for η meson production (3≦PT≦6 GeV/c, |η|≦0.85) and for charged particle production (PT≦10 GeV/c, 1.0≦|η|≦1.8). Results are compared with the predictions of QCD calculations.
No description provided.
No description provided.
No description provided.
In an experiment carried out at the CERN Proton Synchrotron and using the CERN polarized deuteron target, the reaction π+n↑→π+π−p has been measured in the region -t=0.1–1.0 (GeV/c)2 and m(π+π−)=0.36–1.04 GeV at incident momenta of 5.98 and 11.85 GeV/c. We present the m and t dependence of the measured 14 linearly independent spin-density-matrix elements and of the bounds on the moduli squared of the S- and P-wave recoil transversity amplitudes. The results show the presence of ‘‘A1’’ exchange in the unnatural nucleon-helicity-nonflip amplitudes. The natural ‘‘A2’’-exchange amplitudes dominate at large t. In the range 0.2≤-t≤0.4 (GeV/c)2 the mass dependence shows that the unnatural exchange amplitudes with transversity ‘‘down’’ are generally larger than those with transversity ‘‘up.’’ The opposite is true for the natural exchange. In this range of t and at the ρ0 mass, the P-wave unnatural amplitudes with both transversities contribute in equal amounts while the production by natural exchange proceeds entirely with transversity up. We observe rapid changes of the moduli within the ρ0 mass range and variations of the width and the position of the ρ0 peak in spin-averaged partial-wave cross sections. These structures have not been seen in previous polarization experiments and reveal spin dependence of ρ0 production. Our bounds cannot exclude an S-wave resonance in the range 700–800 MeV. The results emphasize the need for a better experimental and theoretical understanding of the mass dependence of the production mechanism.
No description provided.
'Y' components of RHO.
'X' components of RHO.