The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.
RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).
The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.
FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.
The angular dependence of the pp elastic scattering analyzing power was measured at SATURNE II with an unpolarized proton beam and the Saclay polarized proton target. The energy region in the vicinity of the accelerator depolarizing resonance Gγ = 6 at Tkin = 2.202 GeV was studied. Measurements were carried out at seven energies between 2.16 and 2.28 GeV from 17° to 55°CM. No significant anomaly was observed in the angular and energy dependence of the results presented, whereas the existing data sets differ in this energy range.
Additional random-like systematic error of 1.1 PCT.
Additional random-like systematic error of 9.9PCT.
Additional random-like systematic error of 0.2PCT.
We report our first measurements of the polarization in the elastic scattering of negative pions from polarized protons at an incident pion momentum of 40 GeV/ c . The momentum-transfer region covered was 0.08 < | t | < 1.3 (GeV/ c ) 2 . The angular distribution of the polarization exhibits a first minimum of ∼ − 5% and the well-known zero around t ≈ − 0.6 (GeV/ c ) 2 . The energy variation of the first minimum (at around t = − 0.2) may be expressed in a simple form, P avr = −(0.48±0.06) s −0.52±0.05 .
No description provided.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
The spin rotation parameter R in elastic proton-proton scattering has been determined at incident momenta 6 and 16 GeV/ c in the interval from t = −0.18 (GeV/ c ) 2 to −0.54 (GeV/ c ) 2 . R pp at 16 GeV/ c is close to the val obtained for R in π − p elastic scattering at the same incident momentum. Equality of R pp ( s , t ) and R π p ( s , t ) is expected if Pomeron exchange dominates and if factorization holds. The t -dependence of R at 16 GeV/ c is consistent with weak helicity flip.
No description provided.
No description provided.
The K − p differential and total elastic cross-sections have been measured at 14.25 GeV/ c . The results have been compared with various Regge models.
No description provided.
The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.