Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Version 2
Energy and system-size dependence of two- and four-particle $v_2$ measurements in heavy-ion collisions at RHIC and their implications on flow fluctuations and nonflow

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 014904, 2012.
Inspire Record 955160 DOI 10.17182/hepdata.101341

We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.

28 data tables

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.

More…

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

5 data tables

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.

More…

A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 71 (2011) 1557, 2011.
Inspire Record 890503 DOI 10.17182/hepdata.73739

The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^weak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%.

2 data tables

The combined unfolded and weighted results, per bin, for $f(x^{\rm weak}_{\rm B})$. Quoted uncertainties have been scaled by 1.31.

The average value of the $x^{\rm weak}_{\rm B}$ distribution.


Version 2
Strange and Multi-strange Particle Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 62.4 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 024901, 2011.
Inspire Record 871561 DOI 10.17182/hepdata.96847

We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

58 data tables

Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.

Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.

Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.

More…

K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 84 (2011) 034909, 2011.
Inspire Record 857694 DOI 10.17182/hepdata.102405

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

64 data tables

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

More…