During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.
Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.
Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.
E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).
The total and the differential cross sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP using an integrated luminosity of 36.9 pb −1 . The results agree with the QED predictions and consequently there is no evidence for non-standard channels with the same experimental signature. The lower limits obtained on the QED cutoff parameters are Λ + > 143 GeV and Λ − > 120 GeV, and the lower bound on the mass of an excited electron with an effective coupling constant λ γ = 1 is 132 GeV/ c 2 . Upper limits on the branching ratios for the decays Z 0 → γγ , Z 0 → π 0 γ , Z 0 → ηγ and Z 0 → γγγ have been determined to be 5.5 × 10 −5 , 5.5 × 10 −5 , 8.0 × 10 −5 , and 1.7 × 10 −5 respectively. All the limits are at the 95% confidence level.
1990 energies are 88.223, 89.222, 90.217, 91.217, 92.209, 93.208 and 94.202 GeV.. 1991 energies are 88.465, 89.460, 90.208, 91.225, 91.954, 92.953, and 93.703 GeV.. 1992 energy is 91.278 GeV.
Average of all data.
No description provided.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
No description provided.
Errors contain both statistics and systematics.
Cross section for the elastic (ie. gamma p --> VM p) cross section.. Errors contain both statistics and systematics.
The π0 inclusive and semi-inclusive, single-spin asymmetries have been measured using transversely polarized, 200-GeV/c proton and antiproton beams colliding with an unpolarized hydrogen target. The measured asymmetries are consistent with zero within the experimental uncertainties for the kinematic region -0.15<xF<+0.15 and 1<pT<4.5 GeV/c. Improvements in the data analysis showed that our earlier large asymmetries at pT≳3 GeV/c were not correct. These data indicate that PQCD expectations seem confirmed and the higher-twist contribution to the single-spin asymmetry in π0 production at xF=0 is not large. Additional evidence for such a conclusion comes from the measurement of a semi-inclusive π0 asymmetry, where associated charged particles are detected opposite to the π0 azimuthal direction. This experiment also provides high-statistics data on the inclusive π0 cross sections for pp and p¯p collisions at √s≊19.4 GeV. © 1996 The American Physical Society.
No description provided.
Pure inclusive reaction.
Semi-inclusive reaction where at least on associated charged particle is produced at (180+-30) degrees relative to the pi0.
The ZEUS detector has been used to measure the proton structure functionF2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb−1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7<Q2<104 GeV2 andx values as low as 3×10−4. The rapid rise inF2 asx decreases observed previously is now studied in greater detail and persists forQ2 values up to 500 GeV2.
No description provided.
No description provided.
No description provided.
An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
No description provided.
No description provided.
A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb−1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.
The cross sections times branching ratio.
The gluon momentum density xg ( x , Q 2 ) of the proton was extracted at Q 2 = 20 GeV 2 for small values of x between 4 × 10 −4 and 10 −2 from the scaling violations of the proton structure function F 2 measured recently by ZEUS in deep inelastic neutral current ep scattering at HERA. The extraction was performed in two ways. Firstly, using a global NLO fit to the ZEUS data on F 2 at low x constrained by measurementsfrom NMC at larger x ; and secondly using published approximate methods for the solution of the GLAP QCD evolution equations. Consistent results are obtained. A substantial increase of the gluon density is found at small x in comparison with the NMC result obtained at larger values of x .
Values of F2 and slope of F2 obtained from fits to the ZEUS paper used in the extraction of the gluon momentum distributions.
Gluon momenta distribution at Q**2 = 20.