Date

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054908, 2010.
Inspire Record 830676 DOI 10.17182/hepdata.98577

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

19 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, after corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

More…

Version 2
Long range rapidity correlations and jet production in high energy nuclear collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 064912, 2009.
Inspire Record 830070 DOI 10.17182/hepdata.101345

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).

7 data tables

FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

More…

Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

20 data tables

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

125 data tables

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering

The COMPASS collaboration Alekseev, M. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 680 (2009) 217-224, 2009.
Inspire Record 820721 DOI 10.17182/hepdata.55300

We present a LO evaluation of helicity densities of valence, \Delta u_v+\Delta d_v, non-strange sea, \Delta\bar{u}+\Delta\bar{d}, and strange quarks, \Delta s (assumed to be equal to \Delta\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\pi+}_{1,d}, A^{\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004<x<0.3. Both non-strange densities are found to be in a good agreement with previous measurements. The distribution of \Delta s(x) is compatible with zero in the whole measured range, in contrast to the shape of the strange quark helicity distribution obtained in most LO and NLO QCD fits. The sensitivity of the values of \Delta s(x) upon the choice of fragmentation functions used in the derivation is discussed.

4 data tables

Inclusive asymmetry as a function of X.

Charged pion and kaon semi-inclusive asymmetries as functions of X.

Correlations coefficients of the unfolded asymmetries.

More…

Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 172301, 2009.
Inspire Record 819318 DOI 10.17182/hepdata.102090

Forward-backward multiplicity correlation strengths have been measured for the first time with the STAR detector for Au+Au and $\textit{p+p}$ collisions at $\sqrt{s_{NN}}$ = 200 GeV. Strong short and long range correlations are seen in central (0-10%) Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in 40-50% Au+Au collisions. The results are in agreement with predictions from the Dual Parton and Color Glass Condensate models.

2 data tables

FB Correlation strength for Au+Au at different centralities and p+p reactions as a function of $\Delta\eta$.

Backward-forward dispersion, $D_{bf}^{2}$ and forward-forward dispersion $D_{bf}^{2}$ for Au+Au 0-10% centrality and p+p reactions as a function of $\Delta\eta$.


Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 61 (2009) 223-235, 2009.
Inspire Record 810120 DOI 10.17182/hepdata.51622

Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280&lt;Q2&lt;30000 GeV2 and 0.015&lt;x&lt;0.65. The measured cross sections are compared with the predictions of the Standard Model.

38 data tables

Total cross section for CC DIS events for two values of the longitudinal polarization of the electron beam.

Total cross section for CC DIS events as a function of the longitudinal polarization of the electron beam.

Differential cross section DSIG/DQ**2 for the two values of longitudinal polarization of the electron beam.

More…

Scaled momentum distributions of charged particles in dijet photoproduction at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
JHEP 08 (2009) 077, 2009.
Inspire Record 818528 DOI 10.17182/hepdata.52943

The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb-1. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, Lambda_eff, and the LPHD parameter, kappa^ch, are extracted.

15 data tables

Distribution of multiplicity of charged particles in a jet as a function of LN(1/X) for mean jet energy 19 GeV and jet cone opening angle 0.23.

Distribution of multiplicity of charged particles in a jet as a function of LN(1/X) for mean jet energy 23 GeV and jet cone opening angle 0.23.

Distribution of multiplicity of charged particles in a jet as a function of LN(1/X) for mean jet energy 28 GeV and jet cone opening angle 0.23.

More…

Measurement of the Longitudinal Proton Structure Function at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 682 (2009) 8-22, 2009.
Inspire Record 817462 DOI 10.17182/hepdata.53740

The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q^2, the proton structure functions FL and F2 have been extracted in the region 5*10^-4 &lt; x &lt;0.007 and 20 &lt; Q^2 &lt; 130 GeV^2.

50 data tables

The reduced cross section at Q**2 = 24 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 32 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 45 GeV**2 for centre-of-mass energy 318.

More…