Total Cross Sections of Protons with Momentum Between 10 and 28 Gev/c

Ashmore, A. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Rev.Lett. 5 (1960) 576-578, 1960.
Inspire Record 944909 DOI 10.17182/hepdata.192

None

2 data tables

No description provided.

No description provided.


High-Energy Nucleon-Nucleon total Cross Sections

Diddens, A.N. ; Lillethun, E. ; Manning, G. ; et al.
Phys.Rev.Lett. 9 (1962) 32-34, 1962.
Inspire Record 944903 DOI 10.17182/hepdata.46

None

3 data tables

'1'. '2'. '3'.

No description provided.

No description provided.


Measurements of the proton proton total cross-sections by means of Coulomb scattering at the Cern intersecting storage rings

Amaldi, U. ; Biancastelli, R. ; Bosio, C. ; et al.
Phys.Lett.B 43 (1973) 231-236, 1973.
Inspire Record 74360 DOI 10.17182/hepdata.28156

Proton-proton elastic scattering has been measured at the CERN Intersecting Storage Rings in the four-momentum transfer range 0.001 ⩽… t …⩽ 0.015 GeV 2 at centre-of-mass energies of 23 and 31 GeV. The detection of Coulomb scattering and of its interference with nuclear scattering leads to the determination of the real part of the nuclear amplitude and of the total proton-proton cross section by the optical theorem.

2 data tables

No description provided.

No description provided.


The Energy dependence of the proton proton total cross-section for center-of-mass energies between 23 and 53 GeV

Amaldi, U. ; Biancastelli, R. ; Bosio, C. ; et al.
Phys.Lett.B 44 (1973) 112-118, 1973.
Inspire Record 83729 DOI 10.17182/hepdata.28110

Measurements of proton-proton elastic scattering at angles around 6 mrad have been made at centre-of-mass energies of 23, 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The absolute scale of the cross-section was established by determination of the effective density of the colliding beans in their overlap region. Proton-proton total cross sections were deduced by extrapolation of the elastic differential cross-section to the forward direction and by application of the optical theorem. The results indicate that over the energy range studied the proton-proton total cross-section increases from about 39 to about 43 mb.

2 data tables

No description provided.

NEW VALUES OF ELASTIC SLOPE USING APPARATUS DESCRIBED IN U. AMALDI ET AL., PL 43B, 231 (1973).


Elastic pi+ p, K+ p and p p Scattering in the Region of Coulomb-Nuclear Interference at Momenta 42.5-GeV/c and 52.2-GeV/c

Apokin, V.D. ; Vasiliev, A.N. ; Derevshchikov, A.A. ; et al.
Yad.Fiz. 25 (1977) 94-102, 1977.
Inspire Record 108613 DOI 10.17182/hepdata.19035

None

18 data tables

No description provided.

No description provided.

No description provided.

More…

New measurements of proton proton total cross-section at the CERN intersecting storage rings

The CERN-Pisa-Rome-Stony Brook collaboration Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 62 (1976) 460-466, 1976.
Inspire Record 108915 DOI 10.17182/hepdata.27653

Measurements of the proton-proton total cross section have been made with increased precision (±0.6%) over the ISR energy range s =23.5−62.7 GeV . Two different experimental methods gave consistent results, showing that the total cross section increases 10% over the ISR range and in addition that the absolute value of the ISR luminosity can be measured to ±0.9%.

1 data table

CROSS SECTIONS ARE A WEIGHTED AVERAGE OF THOSE OBTAINED BY THE PISA-STONY BROOK METHOD AND BY THE CERN-ROME (OPTICAL THEOREM) METHOD.


The Real Part of the Forward Proton Proton Scattering Amplitude Measured at the CERN Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 66 (1977) 390-394, 1977.
Inspire Record 110800 DOI 10.17182/hepdata.27584

The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.

2 data tables

No description provided.

USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.


Precision Measurement of Proton Proton Total Cross-section at the {CERN} Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Nucl.Phys.B 145 (1978) 367-401, 1978.
Inspire Record 131412 DOI 10.17182/hepdata.34944

The measurement of the proton-proton total cross section performed by the CERN-Pisa-Rome-Stony Brook Collaboration at the CERN ISR is discussed in detail. The total interaction rate, the elastic scattering rate in the forward direction, and the machine luminosity were measured simultaneously to obtain three different determinations of the total cross section. Consistent results were found, which made it possible to prove the reliability of the Van der Meer luminosity calibration within +-0.9% and to achieve a precision of +-0.6% in the measurement of the total cross section.

1 data table

No description provided.


Measurement of the differences in the total cross section for antiparallel and parallel longitudinal spins and a measurement of parity nonconservation with incident polarized protons and antiprotons at 200-GeV/c.

The E581/704 collaboration Grosnick, D.P. ; Hill, D.A. ; Kasprzyk, T. ; et al.
Phys.Rev.D 55 (1997) 1159-1187, 1997.
Inspire Record 420534 DOI 10.17182/hepdata.22329

The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.

2 data tables

No description provided.

No description provided.


Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

3 data tables

Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.

(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.

Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.