Elastic π±−p, K−−p, and p¯−p scattering cross sections have been measured using three different experimental arrangements covering the c.m. angular regions ∼20°-120°, ∼135°-169°, and ∼165°-180° at incident momenta from 6 to 17 GeV/c. In the region 130°-180°, only π±−p scattering was measured. In the angular region near 180°, the energy dependences and shapes of the π−p backward peaks were determined up to crossed-momentum transfers of u∼−2 (GeV/c)2. At all energies, the π+−p backward peak had a sharp dip at u=−0.13 (GeV/c)2, with no similar effect in the π−−p case. Nearly complete angular distributions of π−−p elastic scattering from 20° to 180° have been obtained at 6 and 10 GeV/c. These results at 6 and 10 GeV/c as well as at 8 GeV/c reveal a sharp dip in π−−p scattering at t=−3 (GeV/c)2. Several structures in the form of dips or shoulders were seen in the p¯−p angular distributions also, with less pronounced structure observed in K−−p scattering. At fixed momentum transfer, all cross sections when expressed as dσdt appear to be decreasing with increasing energy.
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
Differential cross sections for the elastic scattering of negative pions from hydrogen have been measured over a limited range of squared four-momentum transfer (t) in the vicinity of t≃−3 (GeV/c)2 for incident pion momenta of 2.51, 2.76, and 3.01 GeV/c. These measurements confirm the existence of a minimum in the differential cross section in this region of incident momentum and scattering angle. The minimum occurs at a smaller value of t [t≃−2.6 (GeV/c)2] than has been observed at higher momenta.
No description provided.
No description provided.
No description provided.
The π−p elastic scattering differential cross section has been obtained at 18 incident momenta from 1.71 to 5.53 GeV/c. The measurements were taken over a limited range of squared four-momentum transfer t near the forward direction. The statistical accuracy and resolution of these data are comparable to, or better than, existing data. The parameter b in the expression dσdt=Aebt has been determined at each of our incident momenta, and a large (∼25%) enhancement in b as a function of momentum is observed at a c.m. energy of ∼2290 MeV. The relation of this bump in b with the well-established bump in the total π−p cross section at ∼2200 MeV is discussed.
No description provided.
No description provided.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
Diffractive dissociation of neutrons and N ∗ production are studied in the reaction π − n → π − π − p at 15 GeV/ c . The reaction is dominated by a broad, low-mass diffractive enhancement in the pπ − mass. Evidence is presented for the production of at least one N ∗ resonance in the mass region 1.4–1.8 GeV. Comparison with ISR data suggest that this N ∗ resonance is produced by pomeron exchange. The N ∗ production occurs predominantly at t ′ > 0.1 GeV 2 which suggests a different coupling from the usual diffractive reactions. The non-resonant diffractive background is compared with a double-Regge model and the statistical dissociation model.
DEPENDENCE OF SLOPE OF D(SIG)/DT ON <P PI-> MASS. DATA FITTED OUT TO -TP=0.4 GEV**2, EXCEPT TO 0.2 GEV**2 FOR M < 1.2 GEV.
We have measured the coherent nuclear production of low-mass K+ω systems in K+A collisions at 202.5 GeV. Results for carbon, copper, and lead targets are similar to those found for π+π+π− production in π+A reactions at the same energy.
M(K+ OMEGA) < 1.5 GEV.
Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.
Magnetic form factors.
Electric form factors.
The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.
Magnetic form factors.
Electric form factors.