Observation of three narrow neutral mesons in the vicinity of 950 mev

Cheshire, D.L. ; Jacobel, R.W. ; Lamb, R.C. ; et al.
Phys.Rev.Lett. 28 (1972) 520-523, 1972.
Inspire Record 75535 DOI 10.17182/hepdata.21441

In a scintillation-counter experiment, we have observed two narrow, neutral mesons in addition to the well-established η′ (958) in the reaction π−p→M0n at 2.4 GeVc. We observe a mass of 940.5 ± 1.7 MeV, Γ<10.4 MeV for the M0(940), and a mass of 962.9 ± 1.7 MeV, Γ<5.9 MeV for the δ0.

1 data table

CROSS SECTION OVERALL UNCERTAINTY (APART FROM ETA PRODUCTION) ABOUT 30 PCT.


AN ESTIMATE OF anti-electron-neutrino MASS FROM THE BETA SPECTRUM OF TRITIUM IN THE VALINE MOLECULE

Lyubimov, V.A. ; Novikov, E.G. ; Nozik, V.Z. ; et al.
Yad.Fiz. 32 (1980) 301-302, 1980.
Inspire Record 153407 DOI 10.17182/hepdata.40262

None

1 data table

No description provided.


Observation of $\mu^+ e^+$ Events in Anti-neutrino - Nucleon Interactions

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Ermolov, P.F. ; et al.
Phys.Lett.B 106 (1981) 151-154, 1981.
Inspire Record 166059 DOI 10.17182/hepdata.41257

The first observation of μ + e + events produced in antineutrino interactions using the Fermilab 15 ft bubble chamber is reported. The relative yield of μ + e + events is (4.8 −3.2 +5.3 ) × 10 −4 of all charged-current events with antineutrino energy greater than 10 GeV. The observed V 0 rate is 1.0 −1.0 +1.2 per μ + e + event. Possible sources of these events are discussed.

1 data table

No description provided.


Nuclear Enhancement of pi0 and eta mesons Produced at Large Transverse Momenta

Povlis, J. ; Biel, J. ; Bromberg, C. ; et al.
Phys.Rev.Lett. 51 (1983) 967, 1983.
Inspire Record 191764 DOI 10.17182/hepdata.20477

The authors have measured the large-pT inclusive cross sections for π0 and η production near 90° in the center-of-mass system in 200-GeV/c π+ and proton collisions with beryllium, carbon, and aluminum targets. The cross section for both π0 and η mesons rises with increasing nucleon number (A) of the target nucleus as Aα, with α>1. The ratio of the π0 yield in pA collisions to that in π+A collisions decreases with increasing pT.

2 data tables

No description provided.

No description provided.


Limit on the B ---> u Coupling from Semileptonic B Decay

The CLEO collaboration Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
Phys.Rev.Lett. 52 (1984) 1084, 1984.
Inspire Record 199380 DOI 10.17182/hepdata.20474

We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.

2 data tables

No description provided.

No description provided.


Measurements of Transverse Quasielastic Electron Scattering From the Deuteron at High Momentum Transfers

Arnold, R.G. ; Benton, D. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 61 (1988) 806, 1988.
Inspire Record 261496 DOI 10.17182/hepdata.20075

Cross sections for 180° inelastic electron scattering from deuterium were measured from breakup threshold to beyond the quasielastic peak for incident-beam energies of 0.843, 1.020, 1.189, and 1.281 GeV, corresponding to 0.75≤Q2≤2.57 (GeV/c)2. The data are in reasonable agreement with nonrelativistic models that include final-state interactions and meson-exchange currents. The scaling function F(y) for these data is generally in agreement with F(y) for forward-angle data at the same Q2. Values of GMn determined from the data are in good agreement with results from previous experiments.

4 data tables

Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).

Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).

Axis error includes +- 0.0/0.0 contribution (3.9 TO 12.0////).

More…

Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

2 data tables

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.

Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).


Elastic magnetic electron scattering from Ca-41

Baghaei, H. ; Cichocki, A. ; Flanz, J.B. ; et al.
Phys.Rev.C 42 (1990) 2358-2366, 1990.
Inspire Record 308591 DOI 10.17182/hepdata.26175

The elastic magnetic form factor of Ca41 has been determined by 180° electron scattering in the momentum-transfer range 0.9–2.0 fm−1. An analysis of the data indicates that the amplitudes of the M3 and M5 multipoles are quenched by factors of 0.57±0.16 and 0.68±0.07 relative to the simple shell model. In contrast, the magnitude of the M7 form factor is in good accord with this model. Calculations that include multiparticle-multihole configurations in the 1f7/2 and 1d3/2 subshells, first-order core polarization to higher excited orbitals, and meson exchange currents give reasonable agreement with the data for all multipoles. The rms radius of the 1f7/2 neutron orbit was determined by means of a combined analysis of our results and previous data obtained at higher momentum transfers. After correcting for core polarization and meson exchange currents, the radius was found to be 3.96±0.05 fm, in agreement with the predictions of mean-field calculations.

1 data table

No description provided.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables

Magnetic form factors.

Electric form factors.


Measurements of the electric and magnetic form-factors of the neutron from Q**2 = 1.75-GeV/c**2 to 4-GeV/c**2

Lung, A. ; Stuart, L.M. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 70 (1993) 718-721, 1993.
Inspire Record 342252 DOI 10.17182/hepdata.19739

Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.

2 data tables

Magnetic form factors.

Electric form factors.