In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.
Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).
CLASS1 (see Table for event classification).
CLASS1 (see Table for event classification).
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the targe
No description provided.
No description provided.
The energy loss spectrum of 150 GeV muons has been measured with a prototype of the ATLAS hadron calorimeter in the H8 beam of the CERN SPS. The differential probability dP/dv per radiation length of a fractional energy loss v = ΔEμ/Eμ has been measured in the range v = 0.01 ÷ 0.95; it is compared with the theoretical predictions for energy losses due to bremsstrahlung and production of electron—positron pairs or of energetic knock-on electrons. The integrated probability \(\int_{0.01}^{0.95}({\rm d}P/{\rm d}v){\rm d}v\) is (1.610 ± 0.015stat ± 0.105syst) · 10−3 in agreement with the theoretical predictions 1.556 · 10−3 and 1.619 · 10−3. Agreement with theory is also found in two intervals of v where production of electron-positron pairs and knock-on electrons dominates. In the region of bremsstrahlung dominance (v = 0.12 ÷ 0.95) the measured integrated probability (1.160 ± 0.040stat ± 0.075syst) · 10−4 is in agreement with the theoretical value of 1.185 · 10−4, obtained using the Petrukhin and Shestakov description of the bremsstrahlung process. The same result is about 3.6 standard deviations (defined as the quadratic sum of statistical and systematic errors) lower than the theoretical prediction of 1.472 · 10−4, obtained using Tsai’s description of bremsstrahlung.
Measured differential probability values DPROB/DNU for fractional energy loss. Only statistical errors are given.
Integrated probability (DELTA(PROB)) per radiation length.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 14.6 GeV/nucleon.
Incident energy is 11.6 GeV/nucleon.
A systematic set of measurements of the global transverse energy distributions, dσ/dET and dET/dη, from beams of protons, O16 and Si28 at 14.6A GeV/c, incident on targets ranging from Be to Au is presented. The detector was a semicircular array of lead-glass blocks, covering polar angles 9°<θ<32°, whose total response provides a good measure of the produced particle yield in the central rapidity region of these reactions. Proton-nucleus spectra exhibit a similar shape on the high-energy tail, independent of target, suggesting that produced particles in such events arise mostly from the first collision of the projectile proton. For targets heavier than Cu, the high-energy edges of the oxygen-nucleus spectra, and of the silicon-nucleus spectra, reach ratios consistent with the geometry of central collisions. Angular distributions, dET/dη, are characterized by Gaussian fits, and an acceptance-independent form of the differential cross section is found, based on the maximum value of dET/dη. The projectile dependence of nucleus-nucleus spectra is studied in terms of two very different models: simple energy scaling and the wounded projectile nucleon model of p+A convolutions.
No description provided.
No description provided.
No description provided.
The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.
No description provided.
No description provided.
No description provided.
None
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGE OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 1.
NUCLEUS IS NUCLEAR PHOTOEMULSION.
Multiplicity distributions, observed inK+ interactions with Al and Au nuclei at 250 GeV/c incident momentum are presented. They are analyzed in the framework of multiple collisions of the incident particle inside a nucleus. The probability distribution of the number of grey tracks is well described by the model of Andersson et al., if a negative binomial distribution is assumed for the distribution of the number of grey protons produced per elementary collision instead of the usual geometrical distribution. The analysis of the average and dispersion of the charge multiplicity distribution supports the validity of the multiple collision model, including results on correlations between forward and backward multiplicities.
No description provided.
No description provided.
No description provided.