$A_y$ in n-d elastic scattering: a test for three-nucleon calculations

Brogli-Gysin, C. ; Campbell, J. ; Haffter, P. ; et al.
Phys.Lett.B 250 (1990) 11-14, 1990.
Inspire Record 1389638 DOI 10.17182/hepdata.29548

We have measured the analyzing power A y in n-d elastic scattering at 67.0 MeV. The experiment was based on the detection of recoil deuterons, allowing for a precise measurement of the backward angular range. The results are in good agreement with recent three-nucleon calculations which are based on the Paris and Bonn NN potentials.

1 data table

No description provided.


Polarization in proton-beryllium and proton-proton scattering at 1.7 GeV

Bareyre, P. ; Detoeuf, J.F. ; Van Rossum, L. ; et al.
Nuovo Cim. 20 (1961) 1049-1066, 1961.
Inspire Record 1185005 DOI 10.17182/hepdata.37750

The polarization in p-Be and p-p scattering has been measured by counter techniques at a proton kinetic energy of 1.74 GeV. The maximum polarization in p-Be scattering was found to beP max==0.19±0.04 and occurs at an angleθ max⩾3.5°. Inelastic scatters were rejected when the inelastic momentum loss was more than about 1% in the first scatter (magnetic analysis) or more than about 5% in the second scatter (Čerenkov threshold counter). The maximum polarization in p-p scattering isP max=0.30±0.09 and occurs at an angle 35°<θ max<<55° (c.m.). The angular dependence of the polarization is consistent with a distribution proportional to sin 2θ within large statistical errors. Optical model calculations applied to the data on p-Be scattering yield an almost all imaginary central potential of about 43 MeV and a spin-orbit potential of between 0.9 MeV and 2.0 MeV which is also almost all imaginary, in contrast with the predominantly real spin-orbit potential needed to explain the large polarization in the region of several hundred MeV.

2 data tables

'1'. '2'. '3'. '4'.

'1'. '2'. '3'. '5'.


Differential cross section and analyzing power measurements for polarized n(d) elastic scattering at 248-MeV

Maeda, Y. ; Sakai, H. ; Fujita, K. ; et al.
Phys.Rev.C 76 (2007) 014004, 2007.
Inspire Record 756614 DOI 10.17182/hepdata.25172

The differential cross sections and vector analyzing powers for nd elastic scattering at En=248 MeV were measured for 10°–180° in the center-of-mass (c.m.) system. To cover the wide angular range, the experiments were performed separately by using two different setups for forward and backward angles. The data are compared with theoretical results based on Faddeev calculations with realistic nucleon-nucleon (NN) forces such as AV18, CD Bonn, and Nijmegen I and II, and their combinations with the three-nucleon forces (3NFs), such as Tucson-Melbourne 99 (TM99), Urbana IX, and the coupled-channel potential with Δ-isobar excitation. Large discrepancies are found between the experimental cross sections and theory with only 2N forces for θc.m.>90°. The inclusion of 3NFs brings the theoretical cross sections closer to the data but only partially explains this discrepancy. For the analyzing power, no significant improvement is found when 3NFs are included. Relativistic corrections are shown to be small for both the cross sections and the analyzing powers at this energy. For the cross sections, these effects are mostly seen in the very backward angles. Compared with the pd cross section data, quite significant differences are observed at all scattering angles that cannot be explained only by the Coulomb interaction, which is usually significant at small angles.

6 data tables

Cross section for N DEUT elastic scattering for data taken in 2003 in the backward direction in the centre-of-mass. Statistical errors only are given.

Cross section for N DEUT elastic scattering for data taken in 2000 in the backward direction in the centre-of-mass. Statistical errors only are given.

Cross section for N DEUT elastic scattering in the forward direction in the centre-of-mass. Statistical errors only are given.

More…

First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table

The single spin analyzing power for 3 T intervals.


Low energy analyzing powers in pion proton elastic scattering.

Meier, R. ; Croni, M. ; Bilger, R. ; et al.
Phys.Lett.B 588 (2004) 155-162, 2004.
Inspire Record 645151 DOI 10.17182/hepdata.26962

Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

11 data tables

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.

More…

Measurement of Polarization of Recoil Protons in ( Pi exp - p) Elastic Scattering at 485 Mev

Bekrenev, V. S. ; Gordeev, V. A. ; Kashchuk, A. P. ;
LA-TR-74-33, 2003.
Inspire Record 1113356 DOI 10.17182/hepdata.41626

None

1 data table

No description provided.


Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


Analyzing powers for pi p elastic scattering between 57 and 139 MeV

Patterson, J.D. ; Hofman, G.J. ; Brack, J.T. ; et al.
Phys.Rev.C 66 (2002) 025207, 2002.
Inspire Record 594648 DOI 10.17182/hepdata.25268

Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.

9 data tables

Analysing power measurements for a 139 GeV PI+ beam (standard track).

Analysing power measurements for a 139 GeV PI- beam (standard track).

Analysing power measurements for a 117 GeV PI- beam (standard track).

More…

Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

6 data tables

Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…