Tests of the standard model and constraints on new physics from measurements of fermion pair production at 183-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 6 (1999) 1-18, 1999.
Inspire Record 473699 DOI 10.17182/hepdata.49337

Cross-sections for hadronic, b-bbar and lepton pair final states in e+e- collisions at sqrt(s) = 183 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. Forward-backward asymmetries for the leptonic final states have also been measured. Cross-sections and asymmetries are also presented for data recorded in 1997 at sqrt(s) = 130 and 136 GeV. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a leptoquark, or of a squark or sneutrino in supersymmetric theories with R-parity violation.

21 data tables

No description provided.

The contribution of interference between initial- and final-state radiationhas been removed.

The contribution of interference between initial- and final-state radiationhas been removed.

More…

First measurement of Z/gamma* production in Compton scattering of quasi-real photons.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 438 (1998) 391-404, 1998.
Inspire Record 474013 DOI 10.17182/hepdata.49379

We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

1 data table

No description provided.


Search for anomalous photonic events with missing energy in e+ e- collisions at s**(1/2) = 130-GeV, 136-GeV and 183-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 23-40, 1999.
Inspire Record 477626 DOI 10.17182/hepdata.49342

Photonic events with large missing energy have been observed in $e^+ e^-$ collisions at centre-of-mass energies of 130, 136 and 183 GeV collected in 1997 using the OPAL detector at LEP. Results are presented for event topologies with a single photon and missing transverse energy or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection. These results are compared with the expectations from the Standard Model process $e^+e^-$ $\rightarrow \nu \bar{\nu +}$ photon(s). No evidence is observed for new physics contributions to these final states. Using the data at $\sqrt{s} = 183$ GeV, upper limits on $\sigma$ ($e^+ e^-$ $\rightarrow$ X.Y)*BR(X $\to \textrm{Y}_{\gamma}$) and $\sigma$ ($e^+ e^-$ $\rightarrow$ X.X)*BR$^2$ (X $\to \textrm{Y}_{\gamma}$) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos $(\textrm{X} = \nu^*, \textrm{Y} = \nu)$, to neutralino production $(\textrm{X} = \overline{\chi}^0_2, \textrm{Y} = \overline{\chi}^0_1)$ and to supersymmetric models in which $X = \overline{\chi}^0_1$ and $Y=\overline{\textrm{G}}$ is a light gravitino.

3 data tables

No description provided.

No description provided.

The data for sqrt(s) = 130 and 136 GeV are combination of present data and previous one (see EPJ C2, 607), the data for sqrt(s)=161 and 172 GeV is from thesame publication.


Measurement of the longitudinal cross-section using the direction of the thrust axis in hadronic events at LEP.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 440 (1998) 393-402, 1998.
Inspire Record 474666 DOI 10.17182/hepdata.49354

In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.

2 data tables

Values of SIG(C=L) integrated over all Thrust.

Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.


W+ W- production and triple gauge boson couplings at LEP energies up to 183-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 191-215, 1999.
Inspire Record 479051 DOI 10.17182/hepdata.49338

A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.

2 data tables

Total W+ W- cross section measurement. The DSYS error corresponds to the total systematic error.

Cross section for W+ W- production in different decay channels. The DSYS error corresponds to the total systematic error.


Multi-photon production in e+ e- collisions at s**(1/2) = 183-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 438 (1998) 379-390, 1998.
Inspire Record 472640 DOI 10.17182/hepdata.49412

The process e+e- to gamma gamma (gamma) is studied using data recorded with the OPAL detector at LEP. The data sample corresponds to a total integrated luminosity of 56.2 pb-1 taken at a centre-of-mass energy of 183 GeV. The measured cross-section agrees well with the expectation from QED. A fit to the angular distribution is used to obtain improved limits at 95% CL on the QED cut-off parameters: Lambda+ > 233 GeV and Lambda- > 265 GeV as well as a mass limit for an excited electron, M(e*) > 227 GeV assuming equal e*egamma and eegamma couplings. No evidence for resonance production is found in the invariant mass spectrum of photon pairs. Limits are obtained for the cross-section times branching ratio for a resonance decaying into two photons.

1 data table

No description provided.


Search for trilinear neutral gauge boson couplings in Z-gamma production at S**(1/2) = 189-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 17 (2000) 553-566, 2000.
Inspire Record 529897 DOI 10.17182/hepdata.49934

The data recorded at a centre-of-mass energy of 189GeV by the OPAL detector at LEP are used to search for trilinear couplings of the neutral gauge bosons in the process e+e- --> Z-gamma. The cross-sections are measured for multihadronic events with an energetic isolated photon and for events with a high energy photon accompanied by missing energy. These cross-sections and the photon energy, polar angle and isolation angle distributions are compared to the Standard Model predictions and to the theoretical expectations of a model allowing for Z-gamma-Z and Z-gamma-gamma vertices. Since no significant deviations with respect to the Standard Model expectations are found, constraints are derived on the strength of neutral trilinear gauge couplings.

2 data tables

Total sysytematic error for Q Qbar (NU NUbar) channel is 0.154 (0.048) pb.

See text for Z(GAMMA) anomalous coupling definitions. Statistical and systematic errors are combined in quadrature.


Z boson pair production in e+ e- collisions at s**(1/2) = 183-GeV and 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Phys.Lett.B 476 (2000) 256-272, 2000.
Inspire Record 524845 DOI 10.17182/hepdata.50015

A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nu nubar), quark and lepton pairs, (q qbar l+l-, q qbar nu nubar) and the all-hadronic final state (q qbar q qbar) are considered. In all states with at least one Z boson decaying hadronically, q qbar and b bbar final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At sqrt(s) = 189 GeV the Z-pair cross section was measured to be 0.80 (+0.14-0.13, stat.) (+0.06-0.05, syst.) pb, consistent with the Standard Model prediction. At sqrt(s) = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZgamma and ZZZ couplings are derived.

1 data table

Measured cross sections for Z0 pair production.


Photonic events with missing energy in e+ e- collisions at s**(1/2) = 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 253-272, 2000.
Inspire Record 526776 DOI 10.17182/hepdata.49967

Photonic events with large missing energy have been observed in e+e- collisions at a centre-of-mass energy of 189GeV using the OPAL detector at LEP. Results are presented for event topologies consistent with a single photon or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection, and the number of light neutrino species is measured. Cross-section results are compared with the expectations from the Standard Model process e+e- to nu nubar + photon(s). No evidence is observed for new physics contributions to these final states. Upper limits are derived on sigma(e+e- to XY).BR(X to Y gamma) and sigma(e+e- to XX).BR**2(X to Y gamma) for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X=nu*, Y = nu), to neutralino production (X=neutralino_2, Y=neutralino_1) and to supersymmetric models in which X = neutralino_1 and Y = light gravitino. The case of macroscopic decay lengths of particle X is considered for e+e- to XX, X to Y gamma, when M_Y is of order zero. The single-photon results are also used to place upper limits on superlight gravitino pair production as well as graviton-photon production in the context of theories with additional space dimensions.

1 data table

No description provided.


Measurement of the W boson mass and W+ W- production and decay properties in e+ e- collisions at s**(1/2) = 172-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 395-424, 1998.
Inspire Record 448093 DOI 10.17182/hepdata.47403

This paper describes the measurement of the W boson mass, M_W, and decay width, Gamma_W, from the direct reconstruction of the invariant mass of its decay products in W pair events collected at a mean centre-of-mass energy of sqrt{s} = 172.12 GeV with the OPAL detector at LEP. Measurements of the W pair production cross-section, the W decay branching fractions and properties of the W decay final states are also described. A total of 120 candidate W^+W^- events has been selected for an integrated luminosity of 10.36 pb^-1. The W^+W^- production cross-section is measured to be sigma_WW = 12.3 +/- 1.3(stat.) +/- 0.3(syst.) pb, consistent with the Standard Model expectation. The W^+W^- -> qq(bar) l nu and W^+W^- -> qq(bar)qq(bar) final states are used to obtain a direct measurement of Gamma_W = 1.30^{+0.62}_{-0.55}(stat.) +/- 0.18(syst.) GeV. Assuming the Standard Model relation between M_W and Gamma_W, the W boson mass is measured to be M_W = 80.32 +/- 0.30(stat.) +/- 0.09(syst.) GeV. The event properties of the fully-hadronic decays of W^+W^- events are compared to those of the semi-leptonic decays. At the current level of precision there is no evidence for effects of colour reconnection in the observables studied. Combining data recorded by OPAL at sqrt{s} ~ 161-172 GeV, the W boson branching fraction to hadrons is determined to be 69.8^{+3.0}_{-3.2}(stat.) +/- 0.7(syst.)%, consistent with the prediction of the Standard Model. The combined mass measurement from direct reconstruction and from the W^+W^- production cross-sections measured at sqrt{s} ~ 161 and sqrt{s} ~ 172 GeV is M_W = 80.35 +/- 0.24(stat.) +/- 0.07(syst.) GeV.

1 data table

The fit assumptions are as follows: fitting branching ratios (C=BR-FIT), lepton universality is assumed (C=LEPT-UNIVERSALITY), and SM Br (C=BR-SM).