This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> ATLAS public webpage of paper: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-03/">link</a><br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> Common: N E = N MU = 1, CHARGE E != CHARGE MU <li> NJETS >= 2, NBJETS >= 2 <li> NJETS >= 3, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 4 <li> NJETS >= 5, NBJETS >= 4 </ul><br/> <b>Objects definitions:</b> <ul> <li> LEP PT > 28 GeV, ABS ETARAP LEP < 2.5 <li> JET PT > 25 GeV, ABS ETARAP JET < 2.5, R JET = 0.4 <li> BJET: >=1 b-hadron with PT > 5 GeV is associated to the jet via ghost matching </ul><br/> <b>Particle level:</b><br/> <br/>Data from Table 06: <a href="153521?table="Fiducial xsec results>Fiducial xsec results </a><br/><br/> <u>1D:</u><br/> Data bootstraps: <ul> <li> Data from Figure 09: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥2b$">Bootstrap $N_{b-jets}$ in $≥2b$ </a> <li> Data from Figure 10a: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥3b$">Bootstrap $N_{b-jets}$ in $≥3b$ </a> <li> Data from Figure 10b: <a href="153521?table=Bootstrap $N_{c/l-jets}$ in $≥3b$">Bootstrap $N_{c/l-jets}$ in $≥3b$ </a> <li> Data from Figure 10c: <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥3b$">Bootstrap $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Figure 10d: <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Figure 11a: <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥3b$">Bootstrap $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Figure 11b: <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Figure 11c: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Figure 11d: <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Figure 12a: <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥3b$">Bootstrap $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Figure 12b: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 13a: <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥3b$">Bootstrap $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13b: <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13c: <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥3b$">Bootstrap $m(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 13d: <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥3b$">Bootstrap $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 14a: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 14b: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14c: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14d: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 15a: <a href="153521?table=Bootstrap $m(bb^{min\Delta R})$ in $≥4b$">Bootstrap $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15b: <a href="153521?table=Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$">Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15c: <a href="153521?table=Bootstrap $m(bb^{add})$ in $≥4b$">Bootstrap $m(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 15d: <a href="153521?table=Bootstrap $p_{T}(bb^{add})$ in $≥4b$">Bootstrap $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 01a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥3b$">Bootstrap $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Figure 01b (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Figure 02a (aux): <a href="153521?table=Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$">Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 02b (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥3b$">Bootstrap $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Figure 03a (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Figure 03b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Figure 04a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥3b$">Bootstrap $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Figure 04b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 05a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥3b$">Bootstrap $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Figure 05b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥3b$">Bootstrap $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Figure 05c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Figure 05d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Figure 06a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥4b$">Bootstrap $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Figure 06b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Figure 06c (axu): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Figure 06d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Figure 07a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥4b$">Bootstrap $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Figure 07b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{4})$ in $≥4b$">Bootstrap $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Figure 07c (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 07d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Figure 08a (aux): <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥4b$">Bootstrap $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 08b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 09a (aux): <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥4b$">Bootstrap $m(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 09b (aux): <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥4b$">Bootstrap $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 10a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥4b$">Bootstrap $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Figure 10b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 11a (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥4b$">Bootstrap $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Figure 11b (aux): <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥4b$">Bootstrap $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Figure 11c (aux): <a href="153521?table=Bootstrap min$\Delta R(bb)$ in $≥4b$">Bootstrap min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Figure 11d (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 12a (aux): <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Figure 12b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Figure 12c (aux): <a href="153521?table=Bootstrap $N_{l/c-jets}$ in $≥4b$">Bootstrap $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Figure 13a (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13b (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13c (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13d (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 14a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥4b$">Bootstrap $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Figure 14b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥4b$">Bootstrap $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Figure 14c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Figure 14d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Figure 15a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥4b$">Bootstrap $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Figure 15b (aux): <a href="153521?table=Bootstrap $|\eta(b_{4})|$ in $≥4b$">Bootstrap $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Figure 15c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Figure 15d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$ </a> </ul><br/> Measurements: <ul> <li> Data from Table 01 (aux): <a href="153521?table=Diff. XS $N_{b-jets}$ in $≥2b$">Diff. XS $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 02 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥3b$">Diff. XS $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 03 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥3b$">Diff. XS $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 04 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 05 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 06 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥3b$">Diff. XS $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 07 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 08 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 09 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 10 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥3b$">Diff. XS $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 11 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 12 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥3b$">Diff. XS $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 13 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 14 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥3b$">Diff. XS $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 15 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 16 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥3b$">Diff. XS $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 17 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 18 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥3b$">Diff. XS $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 19 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 20 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥3b$">Diff. XS $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 21 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥3b$">Diff. XS $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 22 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 23 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥3b$">Diff. XS $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 24 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 25 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥3b$">Diff. XS $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 26 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 27 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 28 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 29 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 30 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 31 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 32 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥4b$">Diff. XS $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 33 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥4b$">Diff. XS $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 34 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 35 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 36 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥4b$">Diff. XS $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 37 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 38 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 39 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 40 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥4b$">Diff. XS $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 41 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 42 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{4})$ in $≥4b$">Diff. XS $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 43 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 44 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥4b$">Diff. XS $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 45 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 46 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥4b$">Diff. XS $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 47 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 48 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥4b$">Diff. XS $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 49 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 50 (aux): <a href="153521?table=Diff. XS $|\eta(b_{4})|$ in $≥4b$">Diff. XS $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 51 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 52 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥4b$">Diff. XS $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 53 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 54 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥4b$">Diff. XS $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 55 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥4b$">Diff. XS $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 56 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 57 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥4b$">Diff. XS $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 58 (aux): <a href="153521?table=Diff. XS $m(bb^{min\Delta R})$ in $≥4b$">Diff. XS $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 59 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$">Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 60 (aux): <a href="153521?table=Diff. XS $m(bb^{add})$ in $≥4b$">Diff. XS $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 61 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{add})$ in $≥4b$">Diff. XS $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 62 (aux): <a href="153521?table=Diff. XS $min\Delta R(bb)$ in $≥4b$">Diff. XS $min\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 63 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 64 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥4b$">Diff. XS $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 65 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 66 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 67 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 68 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 69 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 70 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/> <u>2D:</u><br/> Correlation matrices: <ul> <li> Data from Table 71 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥2b$">Corr. mtrx $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 72 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥3b$">Corr. mtrx $N_{b-jets}$ in $≥3b$ </a> <li> Data from Table 73 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥3b$">Corr. mtrx $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 74 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥3b$">Corr. mtrx $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 75 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 76 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 77 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 78 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 79 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 80 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 81 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥3b$">Corr. mtrx $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 82 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 83 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 84 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 85 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 86 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 87 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥3b$">Corr. mtrx $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 88 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 89 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 90 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 91 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥3b$">Corr. mtrx $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 92 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 93 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 94 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 95 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 96 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥3b$">Corr. mtrx $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 97 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 98 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 99 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 100 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 101 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 102 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 103 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥4b$">Corr. mtrx $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 104 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥4b$">Corr. mtrx $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 105 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 106 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 107 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 108 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 109 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 110 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 111 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥4b$">Corr. mtrx $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 112 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 113 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{4})$ in $≥4b$">Corr. mtrx $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 114 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 115 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 116 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 117 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 118 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 119 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥4b$">Corr. mtrx $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 120 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 121 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{4})|$ in $≥4b$">Corr. mtrx $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 122 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 123 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 124 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 125 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥4b$">Corr. mtrx $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 126 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 127 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 128 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 129 (aux): <a href="153521?table=Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 130 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 131 (aux): <a href="153521?table=Corr. mtrx $m(bb^{add})$ in $≥4b$">Corr. mtrx $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 132 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 133 (aux): <a href="153521?table=Corr. mtrx min$\Delta R(bb)$ in $≥4b$">Corr. mtrx min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 134 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 135 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥4b$">Corr. mtrx $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 136 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 137 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 138 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 139 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 140 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 141 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/>
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic calorimeter using 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a $W$ or $Z$ boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a $Z$ boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.
WIMP-Pion interaction cross section at the 90% CL
A search is presented for non-resonant Higgs boson pair production, targeting the $bbZZ$, 4$V$ ($V$ = $W$ or $Z$), $VV\tau\tau$, 4$\tau$, $\gamma\gamma VV$ and $\gamma\gamma\tau\tau$ decay channels. Events are categorised based on the multiplicity of light charged leptons (electrons or muons), hadronically decaying tau leptons, and photons. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 17 (11) times the Standard Model predicted cross-section at 95% confidence level under the background-only hypothesis. The observed (expected) constraints on the $HHH$ coupling modifier, $\kappa_{\lambda}$, are determined to be $-6.2 < \kappa_{\lambda} < 11.6$ ($-4.5 < \kappa_{\lambda} < 9.6$) at 95% confidence level, assuming the Standard Model for the expected limits and that new physics would only affect $\kappa_{\lambda}$.
Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different ML search channels.
Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different $\gamma\gamma$+ML search channels.
Distribution of the BDT output score in the 4l+2b channel signal region.
Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Statistical covariance between bins of Table 1
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
This paper reports the observation of top-quark pair production in proton-lead collisions in the ATLAS experiment at the Large Hadron Collider. The measurement is performed using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_\mathrm{NN}}=8.16$ TeV in 2016. Events are categorised in two analysis channels, consisting of either events with exactly one lepton (electron or muon) and at least four jets, or events with two opposite-charge leptons and at least two jets. In both channels at least one $b$-tagged jet is also required. Top-quark pair production is observed with a significance over five standard deviations in each channel. The top-quark pair production cross-section is measured to be $\sigma_{t\bar{t}}= 58.1\pm 2.0\;\mathrm{(stat.)\;^{+4.8}_{-4.4} \;\mathrm{(syst.)}}\;\mathrm{nb}$, with a total uncertainty of 9%. In addition, the nuclear modification factor is measured to be $R_{p\mathrm{A}} = 1.090\pm0.039\;(\mathrm{stat.})\;^{+0.094}_{-0.087}\;(\mathrm{syst.})$. The measurements are found to be in good agreement with theory predictions involving nuclear parton distribution functions.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the post-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $\mu$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.
The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.
Isoscalar interaction coupling limit for Lagrangian 1
Isovector interaction coupling limit for Lagrangian 19
Isoscalar interaction coupling limit for Lagrangian 19
A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Inclusive and differential cross-sections are measured at particle level for the associated production of a top quark pair and a photon ($t\bar{t}\gamma$). The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. The measurements are performed in the single-lepton and dilepton top quark pair decay channels focusing on $t\bar{t}\gamma$ topologies where the photon is radiated from an initial-state parton or one of the top quarks. The absolute and normalised differential cross-sections are measured for several variables characterising the photon, lepton and jet kinematics as well as the angular separation between those objects. The observables are found to be in good agreement with the Monte Carlo predictions. The photon transverse momentum differential distribution is used to set limits on effective field theory parameters related to the electroweak dipole moments of the top quark. The combined limits using the photon and the $Z$ boson transverse momentum measured in $t\bar{t}$ production in associations with a $Z$ boson are also set.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Measured $t\bar{t}\gamma$ production fiducial inclusive cross-sections in both decay channels and in the combination.
Summary of the impact of the systematic uncertainties on the $t\bar{t}\gamma$ production fiducial inclusive cross-section in the single-lepton and dilepton channels and their combination grouped into different categories. The quoted relative uncertainties are obtained by repeating the fit, fixing a set of nuisance parameters of the sources corresponding to each category to their post-fit values, and subtracting in quadrature the resulting uncertainty from the total uncertainty of the nominal fit. The total uncertainty is different from the sum in quadrature of the components due to correlations among nuisance parameters.