The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.
Axis error includes +- 0.0/0.0 contribution.
Elastic scattering and single-pion production in pp collisions at 6.92 BeVc were studied in the BNL 80-in. hydrogen bubble chamber. Partial cross sections for the different final states are given. The reaction pp→nN1238*(pπ+) with σ=1.9±0.3 mb is analyzed and is in agreement with the modified one-pion-exchange model. Single-pion production can be explained as due mainly to two channels: (a) pp→N1238*(pπ+)n, and (b) pp→p(nπ+) or pp→p(pπ0), where the (nπ+) and (pπ0) pairs are in an I=12 state.
No description provided.
No description provided.
No description provided.
About 3700 two-prong and 5600 four-prong events of 10-GeV/c pp interactions in the Saclay 81-cm hydrogen bubble chamber have been measured and analyzed. The reliability of the identification of the different final states has been checked using Monte Carlo-generated events. For the channels accessible to analysis, cross sections and invariant-mass distributions are given. The c.m. angular distributions and the mean values of the transverse momentum for all final-state particles are shown and discussed. Production of Δ++(1236) accounts for about 30% of the cross section σ(pp→pnπ+)=4.1±0.4 mb. About 50% of the cross section σ(pp→ppπ+π−)=2.4±0.2 mb can be accounted for by Δ++ production. Production of nucleon isobars at 1450, 1520, and 1730 MeV and their subsequent decay into pπ+π− are investigated. Their cross sections, t dependences, and branching ratios are determined, using a one-pion-exchange model (OPEM) for calculating the background distributions. The production of resonances decaying into pπ− at 1236, 1500, and 1690 MeV is seen, and cross sections are given. Resonance production in the ppπ+π−π0 and pnπ+π+π− reactions is studied using background curves calculated with a model based on simple parametrizations of the c.m. momentum distributions. The production of nucleon isobars accounts for nearly 100% of these reactions. For the reactions pp→ppω, ppη, and ppf0, the cross sections found are 0.16±0.03, 0.16±0.07, and 0.10±0.04 mb, respectively, corrected for unobserved decay modes. It is shown that most of the gross features of the pion-production reactions can be explained by the OPEM with the form factors of Ferrari and Selleri.
No description provided.
No description provided.
Total cross-section data are presented for negative pions, kaons, and antiprotons on protons and deuterons in the momentum range 20 GeV/ c to 65 GeV/ c in 5 GeV/ c steps.
Axis error includes +- 0.0/0.0 contribution.
No description provided.
No description provided.
None
Only statistical errors are given.
Only statistical errors are given.
For the reaction γ+p→γ′+p′ (proton Compton effect), we have measured the ratio dσIIdσ⊥ between the cross sections for linearly polarized photons, using the coherent bremsstrahlung beam of the Frascati electron synchrotron. At 90° in the c.m. system and in the photon energy region 300≤K≤335 MeV, we find dσIIdσ⊥=2.1−0.4+0.5. In the absence of theoretical predictions based on the dispersive theory in this energy region, this result is compared with the values obtained using an isobaric model, taking into account various possible intermediate states.
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
The reaction e+d→e′+n+p was studied at electron scattering angles θ ⩽ 35° for four-momentum transfers of 0.39, 0.565 and 0.78 (GeV/ c ) 2 . By recording electron-neutron and electron-proton coincidences, the ratio of the electron scattering cross sections on quasi-free neutrons and protons was determined. An estimate of the binding effects, based on a Chew-Low-extrapolation, was made. Values for the neutron form factors were derived.
Axis error includes +- 0.0/0.0 contribution (Due to the different effective solid angles for neutron and proton detection in the counters).
No description provided.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
The differential cross section for K + p elastic scattering has been measured at 864, 969 and 1207 MeV/ c . Our data show a smooth transition from low-energy s-wave scattering to high-energy diffraction, and are some-what in disagreement with a recent experiment on K + p backward scattering.
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).