In this paper we have investigated the properties of the D(1285) and E(1420) meson resonances using the five-body annihilation channels p p → K K πππ obtained in a large statistics experiment (28 events/μb). The analysis favours the 1 + spin-parity assignment for the D(1285) meson. The dominant decay mode of the D(1285) into K K π is found to be δ(970)π. The situation concerning the E(1420) meson remains confused although not inconsistent with previous analyses. Partial cross sections on resonance production are also presented.
No description provided.
Inclusive single-particle spectra for π± production are presented for data from π±p interactions at 100 GeV/c. The spectra for the four reactions π±p→π±+anything are compared as a function of laboratory longitudinal momentum, Feynman x, center-of-mass (c.m.) rapidity, and transverse momentum squared. Comparisons are also made between these data and analogous data from 16 and 18.5 GeV/c π±p interactions and the energy dependence is discussed. Average values of the transverse momentum are given as a function of the longitudinal momentum and charged-particle multiplicity. A comparison of the charge distributions is presented as a function of rapidity and c.m. energy.
No description provided.
No description provided.
No description provided.
At the CERN intersecting storage ring the inclusive differential cross section [dσdσ]y=1 has been measured for f0, g0, K*0(1420), and K¯*0(1420) production: We obtain 0.58±0.05 mb, 0.09±0.05 mb, 38±15 μb, and 26±13 μb, respectively. The corresponding total inclusive cross sections are estimated to be 2.62±0.26 mb, 0.40±0.22 mb, 154±60 μb, and 107±52 μb, respectively. The magnitude of the K* cross section implies a cross section of approximately 5 μb for production of a charmed DD¯ pair.
No description provided.
No description provided.
The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
No description provided.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
Results on backward (3 π ) - system produced in π - p→p f π + π - π - reaction at 9 and 12 GeV/ c are given. The ϱ 0 π - mass spectra show two clear signals at 1050 MeV (A 1 region) and 1303 MeV (A - 2 ). The width of the enhancement in the A 1 region (195±32 MeV) is narrower than found in diffractive experiments. Total backward cross sections for those signals are of the same order of magnitude (∼0.5 μb).
No description provided.
For the first time, the line reversed reactions π + p→K + Σ + and K − p→ π − Σ + have been studied in the same apparatus. We present the differential cross sections and polarizations over a large t range and at two momenta, 7.0 and 10.1 GeV/ c . The differential cross sections as a function of t are shown for the first time to cross over. Going from the lower to the higher momentum, the differences in cross section between the two reactions diminish at low | t | by about a factor 2. We find large polarizations of opposite sign for the two reactions. The momentum dependence, presented in the form of α eff ( t ) for the t range 0 to −2 (GeV/ c ) 2 , is compared with the expectations from the K ∗ −K ∗∗ trajectory.
-TMIN = 0.0100 GEV**2.
-TMIN = -0.0087 GEV**2.
-TMIN = 0.0067 GEV**2.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
The reactions p p → K ∗ (890) X , p p →Σ ± (1385) X and p p → S ∗ (993) X at 12 GeV/ c incident momentum have been studied using 19 000 events with a visible V 0 decay in BEBC. Inclusive production cross sections of these resonances as a function of transverse momentum and rapidity are presented. The contribution of annihilation to the production of the K ∗ (890) is investigated from a comparison with the corresponding pp data.
COMBINDED K*+ AND K*- DATA IN THIS TABLE.
COMBINDED K*+ AND K*- DATA IN THIS TABLE.
No description provided.
The reaction p p → π − π + has been studied at 10.1 GeV/ c in the − t interval from 0.15 to 1.5 (GeV/ c ) 2 . A line-reversal comparison with backward elastic scattering π + p → p π + shows good agreement for − t > 0.3 (GeV/ c ) 2 .
No description provided.
No description provided.