The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.
The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.
The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.
The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.
We measure the neutral D total forward cross section and the differential cross sections as function of Feynman-x ($x_F$) and transverse momentum squared for 500 GeV/c $\pi^-$-nucleon interactions. The results are obtained from 88990+-460 reconstructed neutral D mesons from Fermilab experiment E791 using the decay channels $D\to K^-\pi^+$ and $D\to K^-\pi^+\pi^-\pi^+$ (and charge conjugates). We extract fit parameters from the differential cross sections and provide the first direct measurement of the turnover point in the $x_F$ distribution, 0.0131+-0.0038. We measure an absolute $D^0 + \bar{D^0}$ ($x_F > 0$) cross section of 15.4+1.8-2.3 microbarns/nucleon (assuming a linear A dependence). The differential and total forward cross sections are compared to theoretical predictions and to results of previous experiments.
The neutral D total forward cross section summed over all XL (the 0.8 TO 1.0 XL bin is assumed to be half of the 0.6 TO 0.8 but with the same error).
The Feynman X differential cross section integrated over all PT**2.
The PT differential cross section integrated over the full forward XL direction.
Results on the photoproduction of 10 000 fully reconstructed charmed particles from the 108 recorded triggers of Fermilab experiment E691 have been analyzed in the photon-gluon-fusion model. We find that the total cross section, its rise with energy, and the pT2 and xF distributions can be explained by a high mass for the charm quark (mc=1.74−0.18+0.13 GeV/c2) and a soft-gluon distribution [G(x)∼(1-x)gn, where ng=7.1±2.2].
Data can be found in the record RED = 4080.
We present results on the photoproduction of 10 000 charmed particles from the 108 recorded triggers of Fermilab experiment E691. The total cross section for the photoproduction of D0 and D+ particles (and antiparticles) for xF>0.2 is measured to be 3.88±0.06±0.40 μb/Be nucleus at 〈Eγ〉=145 GeV. We have also measured the relative production of different charmed particles, their pT2 and xF distributions, and the energy dependence of the total charm cross section. The mean pT2 is 1.16±0.04 GeV2/c2 and the ratio of charm cross sections at 200 and 100 GeV is 1.96±0.24. Results of fits to the xF distribution are also reported.
D0/AD0 cross section from K-PI+/K+PI- decay mode.
D+/D- cross section from K-2PI+/K+2PI- decay mode.
D*+/D*- cross section from D0<K-PI+>PI+ + CC decay mode.