Showing 4 of 4 results
The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
Charged particle multiplicity distribution.
Average charged particle transverse momentum as a function of the number of charged particles in the event.
The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.
A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.
Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the onshell $W\!Z$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in the SRs for the $W\!h$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the onshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the SRs of the $W\!h$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>lowETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>highETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W^{*}\!Z^{*}$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the onshell $W\!Z$ and $W\!h$ selections. The third and fourth column list the 95 CL upper limits on the visible cross-section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the offshell $W\!Z$ selection. The third and fourth column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the RJR selection. The SM prediction is taken from the background-only fit. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the RJR selection. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
{Results of the discovery-fit for the SRs of the RJR selection, calculated using pseudo-experiments.} The first and second column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The third column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5. vspace{0.5em}
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
Summary of onshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (300,200) GeV and m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (600,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal points, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of $W\!h$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (190,60) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (120,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (100,40) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (185,125) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the longitudinal boost of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded inclusive leptonic asymmetry. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the invariant mass of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the transverse momentum of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the longitudinal boost of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
Individual 68% and 95% CL bounds on the relevant Wilson coefficients of the SM Effective Field Theory in units of $\text{TeV}^{-2}$. The bounds are derived from the $A_C^{t\bar{t}}$ inclusive measurement. The experimental uncertainties are accounted for, in the form of the complete covariance matrix that keeps track of correlations between bins for the differential measurement. The theory uncertainty from the NNLO QCD + NLO EW calculation is included by explicitly varying the renormalization and factorization scales, or the parton density functions, in the calculation and registering the variations in the intervals.
Individual 68% and 95% CL bounds on the relevant Wilson coefficients of the SM Effective Field Theory in units of $\text{TeV}^{-2}$. The bounds are derived from the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement. The experimental uncertainties are accounted for, in the form of the complete covariance matrix that keeps track of correlations between bins for the differential measurement. The theory uncertainty from the NNLO QCD + NLO EW calculation is included by explicitly varying the renormalization and factorization scales, or the parton density functions, in the calculation and registering the variations in the intervals.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ inclusive measurement. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0,0.3]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.3,0.6]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.6,0.8]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.8,1]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ < 500 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [500,750] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [750,1000] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [1000,1500] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ > 1500 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ < 30 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ $\in$ [30,120] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ > 120 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ inclusive measurement. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0,0.3]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.3,0.6]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.6,0.8]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.8,1]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ < 200 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ $\in$ [200,300] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ $\in$ [300,400] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ > 400 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ < 20 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ $\in$ [20, 70] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ > 70 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{t\bar{t}}$ inclusive measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{\ell\ell}$ inclusive measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Post-marginalisation correlation coefficients $\rho_{ij}$ of nuisance parameters for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement. Only $|\rho_{ij}| > 0.05$ values are included.
Covariance matrix for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement. The total (stat. + syst.) uncertainties are considered.
Covariance matrix for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement. The total (stat. + syst.) uncertainties are considered.
Covariance matrix for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement. The total (stat. + syst.) uncertainties are considered.
Covariance matrix for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement. The total (stat. + syst.) uncertainties are considered.
Covariance matrix for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement. The total (stat. + syst.) uncertainties are considered.
Covariance matrix for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement. The total (stat. + syst.) uncertainties are considered.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.