Showing 10 of 773 results
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 200 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 1000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 1500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 2000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 2500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 3000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 4000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 200 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 1000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 1500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 2000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 2500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 3000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 4000 GeV.
The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.
Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNV case).
Prompt HNL search observed and expected 95% confidence level exclusion upper limits in $|U_{e}|^2$ as a function of HNL mass.
Prompt HNL search observed and expected 95% confidence level exclusion upper limits in $|U_{\mu}|^2$ as a function of HNL mass.
Displaced HNL search expected 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).
Displaced HNL search expected 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNV case).
This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.
Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09b, mean nTracks toward, toward region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 09a, mean nTracks transmin, transmin region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 10b, mean meanPt toward, toward region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 10a, mean meanPt transmin, transmin region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04c from auxiliary figures, mean sumPt toward low thrust, toward region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11c, mean sumPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04a from auxiliary figures, mean nTracks toward low thrust, toward region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11a, mean nTracks transmin low thrust, transmin region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06a from auxiliary figures, mean meanPt toward low thrust, toward region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12a, mean meanPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04d from auxiliary figures, mean sumPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11d, mean sumPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04b from auxiliary figures, mean nTracks toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11b, mean nTracks transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06b from auxiliary figures, mean meanPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12b, mean meanPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01a from auxiliary figures, ptSpec toward_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02a from auxiliary figures, ptSpec toward_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04a, ptSpec transmin_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05a, ptSpec transmin_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01b from auxiliary figures, nTracks toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02b from auxiliary figures, nTracks toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04b, nTracks transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05b, nTracks transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01c from auxiliary figures, sumPt toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02c from auxiliary figures, sumPt toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04c, sumPt transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05c, sumPt transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01d from auxiliary figures, meanPt toward_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02d from auxiliary figures, meanPt toward_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04d, meanPt transmin_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05d, meanPt transmin_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03a from auxiliary figures, ptSpec toward_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03c from auxiliary figures, ptSpec toward_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06a, ptSpec transmin_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06c, ptSpec transmin_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05a from auxiliary figures, nTracks toward_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07a, nTracks transmin_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03b from auxiliary figures, ptSpec toward_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03d from auxiliary figures, ptSpec toward_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06b, ptSpec transmin_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06d, ptSpec transmin_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05b from auxiliary figures, nTracks toward_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07b, nTracks transmin_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$200GeV<p_{T}^{Z}<500GeV$
This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.
Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Statistical correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Total correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
List of experimentally considered systematic uncertainties for the WW cross section measurement.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $p_\text{T}^{\text{lead }\ell}$.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $m_{e\mu}$.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $p_{T}^{e\mu}$.
A search for a right-handed gauge boson $W_{\mathrm{R}}$, decaying into a boosted right-handed heavy neutrino $N_{\mathrm{R}}$, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{-1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the $W_{\mathrm{R}}$ and $N_{\mathrm{R}}$ mass plane. Mass values of the $W_{\mathrm{R}}$ smaller than 3.8-5 TeV are excluded for $N_{\mathrm{R}}$ in the mass range 0.1-1.8 TeV.
Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.
Observed 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.
Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the muon channel.
Observed 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the muon channel.
This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.
The correction factors, $C_{W^±,i}$ with their associated systematic uncertainties as a function of $|\eta_{\mu}|$, for $W^+$ and $W^−$
The integrated global correction factor $C_{W^±}$, for $W^+$ and $W^−$
Cross-sections (differential in $\eta_{\mu}$) and asymmetry, as a function of $|\eta_{\mu}|$). The central values are provided along with the statistical and dominant systematic uncertainties: the data statistical uncertainty (Data Stat.), the $E_T^{\textrm{miss}}$ uncertainty, the uncertainties related to muon reconstruction (Muon Reco.), those related to the background, those from MC statistics (MC Stat.), and modelling uncertainties. The uncertainties of the cross-sections are given in percent and those of the asymmetry as an absolute difference from the nominal.
The measured fiducial production cross-sections times branching ratio for $W^+\rightarrow\mu^+\nu$ and $W^-\rightarrow\mu^-\bar{\nu}$, their sum, and their ratio for data
The measured fiducial production cross-sections times branching ratio for $W^+\rightarrow\mu^+ u$ and $W^-\rightarrow\mu^-\bar{\nu}$, their sum, and their ratio for the predictions from DYNNLO (CT14 NNLO PDF set)
Size of the $W^{+}$ the cross-section (differential in $\eta_{\mu}$, as a function of $|\eta_{\mu}|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. gThe uncertainties are given in percent.
Size of the $W^{+}$ the cross-section (differential in $\eta_{\mu}$, as a function of $|\eta_{\mu}|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. gThe uncertainties are given in percent.
Size of the asymmetry as a function of $|\eta_{\mu}|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The uncertainties are given as an absolute difference from the nominal.
Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.
NchRec v.s. Et
<NchRec> w.r.t. Et
<Et> w.r.t. NchRec
Et distribution
NchRec distribution
v_2{2}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4}, standard, 0.5<pT<5.0 GeV
nc_2{4}, standard, 1.0<pT<5.0 GeV
nc_2{4}, standard, 1.5<pT<5.0 GeV
nc_2{4}, standard, 2.0<pT<5.0 GeV
nc_3{4}, standard, 0.5<pT<5.0 GeV
nc_3{4}, standard, 1.0<pT<5.0 GeV
nc_3{4}, standard, 1.5<pT<5.0 GeV
nc_3{4}, standard, 2.0<pT<5.0 GeV
nc_4{4}, standard, 0.5<pT<5.0 GeV
nc_4{4}, standard, 1.0<pT<5.0 GeV
nc_4{4}, standard, 1.5<pT<5.0 GeV
nc_4{4}, standard, 2.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 2.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 0.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 2.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 0.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 2.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 0.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 2.0<pT<5.0 GeV
nc_2{6}, standard, 0.5<pT<5.0 GeV
nc_2{6}, standard, 1.0<pT<5.0 GeV
nc_2{6}, standard, 1.5<pT<5.0 GeV
nc_2{6}, standard, 2.0<pT<5.0 GeV
nc_3{6}, standard, 0.5<pT<5.0 GeV
nc_3{6}, standard, 1.0<pT<5.0 GeV
nc_3{6}, standard, 1.5<pT<5.0 GeV
nc_3{6}, standard, 2.0<pT<5.0 GeV
nc_4{6}, standard, 0.5<pT<5.0 GeV
nc_4{6}, standard, 1.0<pT<5.0 GeV
nc_4{6}, standard, 1.5<pT<5.0 GeV
nc_4{6}, standard, 2.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, standard, 0.5<pT<5.0 GeV
c_1{4}, standard, 1.0<pT<5.0 GeV
c_1{4}, standard, 1.5<pT<5.0 GeV
c_1{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, 3-subevent, 0.5<pT<5.0 GeV
c_1{4}, 3-subevent, 1.0<pT<5.0 GeV
c_1{4}, 3-subevent, 1.5<pT<5.0 GeV
c_1{4}, 3-subevent, 2.0<pT<5.0 GeV
v_1{4}, standard, 1.5<pT<5.0 GeV
v_1{4}, standard, 2.0<pT<5.0 GeV
v_1{4}, 3-subevent, 1.5<pT<5.0 GeV
v_1{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_3{4}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_4{4}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
nac_2{3}, standard, 0.5<pT<5.0 GeV
nac_2{3}, standard, 1.0<pT<5.0 GeV
nac_2{3}, standard, 1.5<pT<5.0 GeV
nac_2{3}, standard, 2.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 0.5<pT<5.0 GeV
nc_2{4, Et}, standard, 1.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Et}, standard, 2.0<pT<5.0 GeV
nc_3{4, Et}, standard, 0.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.0<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 2.0<pT<5.0 GeV
nc_4{4, Et}, standard, 0.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.0<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 2.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 0.5<pT<5.0 GeV
nc_2{6, Et}, standard, 1.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 2.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 2.0<pT<5.0 GeV
nac_2{3, Et}, standard, 0.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.0<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 0.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 2.0<pT<5.0 GeV
v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
v_3{4}, standard, 0.5<pT<5.0 GeV
v_3{4}, standard, 1.0<pT<5.0 GeV
v_3{4}, standard, 1.5<pT<5.0 GeV
v_3{4}, standard, 2.0<pT<5.0 GeV
v_3{4, Et}, standard, 0.5<pT<5.0 GeV
v_3{4, Et}, standard, 1.0<pT<5.0 GeV
v_3{4, Et}, standard, 1.5<pT<5.0 GeV
v_3{4, Et}, standard, 2.0<pT<5.0 GeV
v_3{4, Nch}, standard, 0.5<pT<5.0 GeV
v_3{4, Nch}, standard, 1.0<pT<5.0 GeV
v_3{4, Nch}, standard, 1.5<pT<5.0 GeV
v_3{4, Nch}, standard, 2.0<pT<5.0 GeV
v_4{4}, standard, 0.5<pT<5.0 GeV
v_4{4}, standard, 1.0<pT<5.0 GeV
v_4{4}, standard, 1.5<pT<5.0 GeV
v_4{4}, standard, 2.0<pT<5.0 GeV
v_4{4, Et}, standard, 0.5<pT<5.0 GeV
v_4{4, Et}, standard, 1.0<pT<5.0 GeV
v_4{4, Et}, standard, 1.5<pT<5.0 GeV
v_4{4, Et}, standard, 2.0<pT<5.0 GeV
v_4{4, Nch}, standard, 0.5<pT<5.0 GeV
v_4{4, Nch}, standard, 1.0<pT<5.0 GeV
v_4{4, Nch}, standard, 1.5<pT<5.0 GeV
v_4{4, Nch}, standard, 2.0<pT<5.0 GeV
v_2{6}, standard, 0.5<pT<5.0 GeV
v_2{6}, standard, 1.0<pT<5.0 GeV
v_2{6}, standard, 1.5<pT<5.0 GeV
v_2{6}, standard, 2.0<pT<5.0 GeV
v_2{6, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, standard, 0.5<pT<5.0 GeV
sc_2_3{4}, standard, 1.0<pT<5.0 GeV
sc_2_3{4}, standard, 1.5<pT<5.0 GeV
sc_2_3{4}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
sc_2_4{4}, standard, 0.5<pT<5.0 GeV
sc_2_4{4}, standard, 1.0<pT<5.0 GeV
sc_2_4{4}, standard, 1.5<pT<5.0 GeV
sc_2_4{4}, standard, 2.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
ac_2{3}, standard, 0.5<pT<5.0 GeV
ac_2{3}, standard, 1.0<pT<5.0 GeV
ac_2{3}, standard, 1.5<pT<5.0 GeV
ac_2{3}, standard, 2.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
This letter describes the observation of the light-by-light scattering process, $\gamma\gamma\rightarrow\gamma\gamma$, in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\textrm{T}}^{\gamma} > 3$ GeV and pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 $\pm$ 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 $\pm$ 13 (stat.) $\pm$ 7 (syst.) $\pm$ 3 (lumi.) nb.
The diphoton acoplanarity A$_{\phi}$ distribution for events satisfying the signal selection, but before the A$_{\phi} < 0.01$ requirement. Data points are compared with the signal and background expectations. Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.
Diphoton transverse momentum for events satisfying the signal selection. Data (points) are compared with the sum of signal and background expectations (histograms). Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.
Fiducial cross section for light-by-light scattering
A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.
Measurement of the $WWW$ cross section.
Measurement of the $WWZ$ cross section.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.