Date

A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.


Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 752, 2020.
Inspire Record 1777617 DOI 10.17182/hepdata.90837

A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1 TeV for gluinos and 0.9 TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.

16 data tables

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

More…

Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2020) 126, 2020.
Inspire Record 1777308 DOI 10.17182/hepdata.93014

A search for charged Higgs bosons (H$^\pm$) decaying into a top and a bottom quark in the all-jet final states is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H$^\pm$ production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H$^\pm$ masses in the range of 0.2 to 3 TeV. Combining this with data from a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary $s$-channel production of an H$^\pm$ is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.

3 data tables

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair.

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for s-channel production in the boosted regime.

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for the associated production (fully hadronic).


Measurement of the associated production of a Z boson with charm or bottom quark jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 032007, 2020.
Inspire Record 1776758 DOI 10.17182/hepdata.94288

Ratios of cross sections, $\sigma$(Z+c jets)/$\sigma$(Z+jets), $\sigma$(Z+b jets)/$\sigma$(Z+jets), and $\sigma$(Z+c jets)/$\sigma$(Z+b jets) in the associated production of a Z boson with at least one charm or bottom quark jet are measured in proton-proton collisions at $\sqrt{s}=$ 13 TeV. The data sample, collected by the CMS experiment at the CERN LHC, corresponds to an integrated luminosity of 35.9 fb$^{-1}$, with a fiducial volume of $p_\mathrm{T}>$ 30 GeV and $|\eta|<$ 2.4 for the jets, where $p_\mathrm{T}$ and $\eta$ represent transverse momentum and pseudorapidity, respectively. The Z boson candidates come from leptonic decays into electrons or muons with $p_\mathrm{T}>$ 25 GeV and $|\eta|<$ 2.4, and the dilepton mass satisfies 71 $\lt m_\mathrm{Z}\lt$ 111 GeV. The measured values are $\sigma$(Z+c jets)/$\sigma$(Z+jets) = 0.102 $\pm$ 0.002 $\pm$ 0.009, $\sigma$(Z+b jets)/$\sigma$(Z+jets) = 0.0633 $\pm$ 0.0004 $\pm$ 0.0015, and $\sigma$(Z+c jets)/$\sigma$(Z+b jets) = 1.62 $\pm$ 0.03 $\pm$ 0.15. Results on the inclusive and differential cross section ratios as functions of jet and Z boson transverse momentum are compared with predictions from leading and next-to-leading order perturbative quantum chromodynamics calculations. These are the first measurements of the cross section ratios at 13 TeV, and the measurement precision is better than that of the current theoretical predictions.

6 data tables

Unfolded R(c/j) cross section ratio versus jet transverse momentum

Unfolded R(c/j) cross section ratio versus Z boson transverse momentum

Unfolded R(b/j) cross section ratio versus jet transverse momentum

More…

Study of excited $\Lambda_\mathrm{b}^0$ states decaying to $\Lambda_\mathrm{b}^0\pi^+\pi^-$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135345, 2020.
Inspire Record 1776599 DOI 10.17182/hepdata.93064

A study of excited $\Lambda_\mathrm{b}^0$ baryons is reported, based on a data sample collected in 2016-2018 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. The existence of four excited $\Lambda_\mathrm{b}^0$ states: $\Lambda_\mathrm{b}$(5912)$^0$, $\Lambda_\mathrm{b}$(5920)$^0$, $\Lambda_\mathrm{b}$(6146)$^0$, and $\Lambda_\mathrm{b}$(6152)$^0$ in the $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass spectrum is confirmed, and their masses are measured. The $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass distribution exhibits a broad excess of events in the region of 6040-6100 MeV, whose origin cannot be discerned with the present data.

2 data tables

Measured mass differences


Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 146, 2020.
Inspire Record 1772050 DOI 10.17182/hepdata.95469

The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric ($\hat{d}_\mathrm{t}$) and chromomagnetic ($\hat{\mu}_\mathrm{t}$) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The linearized variable $A_\mathrm{FB}^{(1)}$ is used to approximate the asymmetry. Candidate $\mathrm{t\bar{t}}$ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for $\mathrm{t\bar{t}}$ final states. The values found for the parameters are $A_\mathrm{FB}^{(1)} =$ 0.048 $^{+0.095}_{-0.087}$ (stat) $^{+0.020}_{-0.029}$ (syst), $\hat{\mu}_\mathrm{t} =-$ 0.024 $^{+0.013}_{-0.009}$ (stat) $^{+0.016}_{-0.011}$ (syst), and a limit is placed on the magnitude of $|\hat{d}_\mathrm{t}|$ $<$ 0.03 at 95% confidence level.

3 data tables

Linearized top quark forward-backward production asymmetry $A_{FB}^{(1)}$

Top quark anomalous chromomagnetic dipole moment $\hat{\mu}_{t}$

Top quark anomalous chromoelectric dipole moment $\hat{d}_{t}$


Measurement of the $\chi_\mathrm{c1}$ and $\chi_\mathrm{c2}$ polarizations in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 124 (2020) 162002, 2020.
Inspire Record 1771351 DOI 10.17182/hepdata.92245

The polarizations of promptly produced $\chi_\mathrm{c1}$ and $\chi_\mathrm{c2}$ mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at $\sqrt{s} = $ 8 TeV. The $\chi_\mathrm{c}$ states are reconstructed via their radiative decays $\chi_\mathrm{c}$ $\to$ $\mathrm{J}/\psi\, \gamma$, with the photons being measured through conversions to e$^+$e$^-$, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the $\chi_\mathrm{c2}$ to $\chi_\mathrm{c1}$ yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the $\mathrm{J}/\psi$ $\to$ $\mu^+\mu^-$ decay, in three ranges of $\mathrm{J}/\psi$ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.

6 data tables

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 8-12 GeV

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 12-18 GeV

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 18-30 GeV

More…

Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 124 (2020) 131802, 2020.
Inspire Record 1769657 DOI 10.17182/hepdata.99929

A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using $\sqrt{s} =$ 13 TeV proton-proton collision data recorded at the LHC. In the 45-75 and 110-200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5-45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 fb$^{-1}$ and 96.6 fb$^{-1}$ for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the $\sim$30-75 and 110-200 GeV mass ranges.

3 data tables

The dimuon mass distributions of events selected with the standard muon triggers (maroon, darker), and the scouting dimuon triggers (green, lighter). Events are required to pass all the selection requirements.

Expected and observed upper limits at 95% CL on the product of the signal cross section ($\sigma$) for a narrow resonance, branching fraction to a pair of muons ($\mathcal{B}$), and acceptance ($A$) as a function of the mass of a narrow resonance. Results obtained using the scouting (standard) triggers are to the left (right) of the vertical purple line.

Expected and observed upper limits at 90% CL on $\epsilon^{2}$, the square of the kinetic mixing coefficient, as a function of the dark photon mass. Results obtained using the scouting (standard) triggers are to the left (right) of the vertical purple line.


Measurement of the top quark pair production cross section in dilepton final states containing one $\tau$ lepton in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 191, 2020.
Inspire Record 1767671 DOI 10.17182/hepdata.93743

The cross section of top quark pair production is measured in the $\mathrm{t\bar{t}}\to (\ell\nu_{\ell})(\tau_\mathrm{h}\nu_{\tau})\mathrm{b\bar{b}}$ final state, where $\tau_\mathrm{h}$ refers to the hadronic decays of the $\tau$ lepton, and $\ell$ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}=$ 13 TeV with the CMS detector. The measured cross section is $\sigma_{\mathrm{t\bar{t}}} =$ 781 $\pm$ 7 (stat) $\pm$ 62 (syst) $\pm$ 20 (lum) pb, and the ratio of the partial width $\Gamma($t$\to\tau\nu_{\tau}$b) to the total decay width of the top quark is measured to be 0.1050 $\pm$ 0.0009 (stat) $\pm$ 0.0071 (syst). This is the first measurement of the $\mathrm{t\bar{t}}$ production cross section in proton-proton collisions at $\sqrt{s}=$ 13 TeV that explicitly includes $\tau$ leptons. The ratio of the cross sections in the $\ell\tau_\mathrm{h}$ and $\ell\ell$ final states yields a value $R_{\ell\tau_\mathrm{h}/\ell\ell}=$ 0.973 $\pm$ 0.009 (stat) $\pm$ 0.066 (syst), consistent with lepton universality.

3 data tables

The measured inclusive top quark pair production cross section in the dilepton final state with one tau lepton.

The ratio between top quark production cross sections measured in lepton-tau and light dilepton final states.

The ratio of the partial width to the total decay width of the top quark.


Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 051, 2020.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

58 data tables

The $M_{T}$ distribution in the WZ-enriched region. The last bin contains the overflow events.

The $L_{T}$ distribution in the ttZ-enriched region. The last bin contains the overflow events.

The $S_{T}$ distribution in the ZZ-enriched region. The last bin contains the overflow events.

More…