Date

Version 2
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 765, 2017.
Inspire Record 1609448 DOI 10.17182/hepdata.78366

Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a $Z/\gamma^\ast$ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper.

7 data tables

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the VBF phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $M_\text{jj}$ in the VBF phase space. The fiducial SM predictions for the numerator and the denominator are also given.

More…

Search for new phenomena in high-mass diphoton final states using 37 fb$^{-1}$ of proton--proton collisions collected at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 105-125, 2017.
Inspire Record 1609773 DOI 10.17182/hepdata.79924

Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 36.7 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s}=13$ TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.

13 data tables

Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a narrow-width (Γ_X = 4 MeV) spin-0 resonance as a function of its mass m_X.

Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a spin-0 resonance as a function of its mass m_X. The decay width of the resonance equals to 2% of m_X.

Upper limits on the fiducial cross section times branching ratio to two photons at centre-of-mass energy of 13 TeV of a spin-0 resonance as a function of its mass m_X. The decay width of the resonance equals to 6% of m_X.

More…

Study of $WW\gamma$ and $WZ\gamma$ production in $pp$ collisions at $\sqrt{s} = 8$ TeV and search for anomalous quartic gauge couplings with the ATLAS experiment

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 646, 2017.
Inspire Record 1610451 DOI 10.17182/hepdata.78400

This paper presents a study of $WW\gamma$ and $WZ\gamma$ triboson production using events from proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The $WW\gamma$ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos ($e\nu\mu\nu\gamma$). Upper limits on the production cross-section of the $e\nu\mu\nu\gamma$ final state and the $WW\gamma$ and $WZ\gamma$ final states containing an electron or a muon, two jets, a photon, and a neutrino ($e\nu jj\gamma$ or $\mu\nu jj\gamma$) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which $WW\gamma$ and $WZ\gamma$ production are sensitive.

8 data tables

Computed fiducial cross section in the $e\nu\mu\nu\gamma$ channel. The first uncertainty shown is the statistical uncertainty and the second one is the total systematic uncertainty including the uncertainty due to the luminosity. The theoretical prediction is determined with the VBFNLO generator and its uncertainty does not account for an uncertainty related to the scale introduced by restricting the jet multiplicity in the fully leptonic channel.

Observed and expected cross-section upper limits at 95\% CL for the different final states using the CL$_{\text{s}}$ method. The expected cross-section limits are computed assuming no signal is present. The last column shows the theory prediction for the signal cross-section ($\sigma_{\text{theo}}$) computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

Observed and expected cross-section upper limits at 95\% CL using the CL$_{\text{s}}$ method for the different final states with the photon \et threshold optimised for maximal aQGC sensitivity. The expected cross-section limits are computed assuming the absence of $WV\gamma$ production. The last column shows the theory prediction for the SM signal cross-section computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

More…

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2017) 142, 2017.
Inspire Record 1610629 DOI 10.17182/hepdata.79807

A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction.

14 data tables

Observed data compared to the background prediction. The expectation for the T5Wg signal scenario with a gluino mass of 1600 GeV and a gaugino mass of 100 GeV and the T6gg signal scenario with a squark mass of 1750 GeV and a neutralino mass of 1650 GeV are shown. The last three bins of the low-H_T^gamma selection are displayed, corresponding to three of the search regions The rightmost bin includes all events with ptmiss > 600GeV.

Observed data compared to the background prediction. The expectation for the T5Wg signal scenario with a gluino mass of 1600 GeV and a gaugino mass of 100 GeV and the T6gg signal scenario with a squark mass of 1750 GeV and a neutralino mass of 1650 GeV are shown. The last three bins of the high-H_T^gamma selection are displayed, corresponding to three of the search regions The rightmost bin includes all events with ptmiss > 600GeV.

Exclusion limits on the SUSY cross section at 95% CL for the T6gg model.

More…

Measurements of multiparticle correlations in $d$$+$Au collisions at 200, 62.4, 39, and 19.6 GeV and $p$$+$Au collisions at 200 GeV and implications for collective behavior

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 120 (2018) 062302, 2018.
Inspire Record 1610655 DOI 10.17182/hepdata.151393

Recently, multiparticle-correlation measurements of relativistic $p/d/^3$He$+$Au, $p$$+$Pb, and even $p$$+$$p$ collisions have shown surprising collective signatures. Here we present beam-energy-scan measurements of 2-, 4-, and 6-particle angular correlations in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200, 62.4, 39, and 19.6 GeV. We also present measurements of 2- and 4-particle angular correlations in $p$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. We find the 4-particle cumulant to be real-valued for $d$$+$Au collisions at all four energies. We also find that the 4-particle cumulant in $p$$+$Au has the opposite sign as that in $d$$+$Au, indicating that the correlations are geometrical and therefore collective in origin. Further we find that the 6-particle cumulant agrees with the 4-particle cumulant in $d$$+$Au collisions at 200 GeV, which indicates that nonflow effects are subdominant and provides strong evidence of collectivity.

15 data tables

Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.

Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.

$v_2${2}, $v_2${2, |$\Delta\eta$| > 2}, and $v_2${4} as a function of $N^{FVTX}_{tracks}$ in $d$+Au collisions with $\sqrt{s_{NN}}$= (a) 200 GeV, (b) 62.4 GeV, (c) 39 GeV, and (d) 19.6 GeV; also shown in (a) is $v_2${6} for $\sqrt{s_{NN}}$= 200 GeV. The arrowheads on the statistical uncertainties indicate cases where the standard 1$\sigma$ uncertainty on the $c_2${4} crosses zero. For 19.6 GeV, the combined confidence interval for $v_2${4} to be real is 79%.

More…

Search for heavy resonances decaying to a $W$ or $Z$ boson and a Higgs boson in the $q\bar{q}^{(\prime)}b\bar{b}$ final state in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 774 (2017) 494-515, 2017.
Inspire Record 1611039 DOI 10.17182/hepdata.77272

A search for heavy resonances decaying to a $W$ or $Z$ boson and a Higgs boson in the $q\bar{q}^{(\prime)}b\bar{b}$ final state is described. The search uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} =$ 13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) $\sigma$. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a $W$ ($Z$) boson and a Higgs boson, itself decaying to $b\bar{b}$, in the mass range between 1.1 and 3.8 TeV; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level.

3 data tables

The observed and expected cross-section upper limits at the 95% confidence level for pp -> V prime -> VH -> qq(bb+cc) in the WH signal region.

The observed and expected cross-section upper limits at the 95% confidence level for pp -> V prime -> VH -> qq(bb+cc) in the ZH signal region.

Signal acceptance x efficiency as a function of resonance mass.


Searches for the $Z\gamma$ decay mode of the Higgs boson and for new high-mass resonances in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 112, 2017.
Inspire Record 1613896 DOI 10.17182/hepdata.78906

This article presents searches for the $Z\gamma$ decay of the Higgs boson and for narrow high-mass resonances decaying to $Z\gamma$, exploiting $Z$ boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected - assuming Standard Model $pp\to H\to Z\gamma$ production and decay) upper limit on the production cross section times the branching ratio for $pp\to H\to Z\gamma$ is 6.6 (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.

3 data tables

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-0 resonance.

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-2 resonance via gluon-gluon initial states.

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-0 resonance via qqbar initial states.


Version 2
Observation of the Higgs boson decay to a pair of tau leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 779 (2018) 283-316, 2018.
Inspire Record 1613900 DOI 10.17182/hepdata.83008

A measurement of the coupling strength of the Higgs boson to a pair of tau leptons is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 35.9 inverse femtobarns. The H to tau tau signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H to tau tau signal production cross section and branching fraction is 1.09 +0.27-0.26 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8 TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to tau leptons by a single experiment.

3 data tables

Local p-value and significance as a function of the SM Higgs boson mass hypothesis. The observation (red, solid) is compared to the expectation (blue, dashed) for a Higgs boson with a mass mH = 125.09 GeV. The background includes Higgs boson decays to pairs of W bosons, with mH = 125.09 GeV.

Best fit signal strength per category, for mH = 125.09 GeV. The constraints from the global fit are used to extract each of the individual best fit signal strengths. The combined best fit signal strength is μ = 1.09+0.27

Best fit signal strength per channel, for mH = 125.09 GeV. The constraints from the global fit are used to extract each of the individual best fit signal strengths. The combined best fit signal strength is μ = 1.09+0.27


Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}$=13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 191, 2017.
Inspire Record 1614149 DOI 10.17182/hepdata.80041

Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.

28 data tables

Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix of the relative cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix for the absolute cross-section as function of the hadronic top-quark top quark pT, accounting for the statistic and systematic uncertainties in the boosted topology.

More…