We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} τ^+ τ^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $Υ(4S)$ resonance. One of the $B$ mesons produced in the $Υ(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $τ$ leptons of opposite charge. The $τ$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $ρ$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} τ^+ τ^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.
We search for the rare decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ in a $362\ \rm{fb}^{-1}$ sample of electron-positron collisions at the $\Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying $B$ meson in $\Upsilon(4S) \to B\kern 0.18em\overline{\kern -0.18em B}{}$ events to suppress background from other decays of the signal $B$ candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying $B$ meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ branching fraction of $\left[2.7\pm 0.5(\mathrm{stat})\pm 0.5(\mathrm{syst})\right] \times 10^{-5}$ and $\left[1.1^{+0.9}_{-0.8}(\mathrm{stat}){}^{+0.8}_{-0.5}(\mathrm{syst})\right] \times 10^{-5}$, respectively. Combining the results, we determine the branching fraction of the decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ to be $\left[2.3 \pm 0.5(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst})\right]\times 10^{-5}$, providing the first evidence for this decay at $3.5$ standard deviations. The combined result is $2.7$ standard deviations above the standard model expectation.
A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic calorimeter using 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a $W$ or $Z$ boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a $Z$ boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
A search for $t$-channel exchange of leptoquarks (LQs) is performed in dimuon and dielectron spectra using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. Eight scenarios are considered, in which scalar or vector LQs couple up or down quarks to muons or electrons, for dilepton invariant masses above 500 GeV. The LQ masses are probed up to 5 TeV, beyond a regime probed by previous pair-production and single-production searches. The differential distributions of dilepton events are fit to templates that model the nonresonant LQ exchange and various standard model background processes. Limits are set on LQ-fermion coupling strengths for scalar and vector LQ masses in the 1-5 TeV range at 95% confidence level, establishing stringent limits on first- and second-generation LQs.
This paper presents a search for new physics through the process where a new massive particle, X, decays into a Higgs boson and a second particle, Y. The Higgs boson subsequently decays into a bottom quark-antiquark pair, reconstructed as a single large-radius jet. The decay products of Y are also assumed to produce a single large-radius jet. The identification of the Y particle is enhanced by computing the anomaly score of its candidate jet using an autoencoder, which measures deviations from typical QCD multijet jets. This allows a simultaneous search for multiple Y decay scenarios within a single analysis. In the main benchmark process, Y is a scalar particle that decays into W$^+$W$^-$. Two other benchmark processes are also considered, where Y is a scalar particle decaying into a light quark-antiquark pair, or into a top quark-antiquark pair. The last benchmark considers Y as a hadronically decaying top quark, arising from the decay of a vector-like quark into a top quark and a Higgs boson. Data recorded by the CMS experiment at a center-of-mass energy of 13 TeV in 2016$-$2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$, are analyzed. No significant excess is observed, and upper limits on the benchmark signal cross section for various masses of X and Y, at 95% confidence level, are placed.
A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.
A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.
High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.