Date

Collaboration Reset

Observation of the Onset of Constituent Quark Number Scaling in Heavy-Ion Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 135 (2025) 072301, 2025.
Inspire Record 2907591 DOI 10.17182/hepdata.159489

Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.

72 data tables

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV

More…

Precision Measurement of (Net-)proton Number Fluctuations in Au+Au Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 135 (2025) 142301, 2025.
Inspire Record 2906592 DOI 10.17182/hepdata.159490

We report precision measurements on cumulants ($C_{n}$) and factorial cumulants ($\kappa_{n}$) of (net-)proton number distributions up to fourth-order in Au+Au collisions from phase II of the Beam Energy Scan program at RHIC. (Anti-)protons are selected at midrapidity ($|y|<0.5$) within a transverse momentum range of $0.4 < p_T < 2.0$ GeV/$c$. The collision energy and centrality dependence of these cumulants are studied over center-of-mass energies $\sqrt{s_{NN}}$ = 7.7 -- 27 GeV. Relative to various non-critical-point model calculations and peripheral collision 70-80% data, the net-proton $C_4/C_2$ measurement in 0-5% collisions shows a minimum around 19.6 GeV for significance of deviation at $\sim2$--$5\sigma$. In addition, deviations from non-critical baselines around the same collision energy region are also seen in proton factorial cumulant ratios, especially in $\kappa_2/\kappa_1$ and $\kappa_3/\kappa_1$. Dynamical model calculations including a critical point are called for in order to understand these precision measurements.

14 data tables

Reference multiplicity distributions (RefMult3 and RefMult3X) for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV along with MC Glauber model fits.

Collision centrality dependence of net-proton cumulants in Au+Au collisions for $\sqrt{s_{NN}}$ = 7.7 - 27 GeV obtained with RefMult3 and RefMult3X centrality definition.

Collision energy dependence of net-proton cumulant ratios and proton factorial cumulant ratios in Au+Au collisions from $\sqrt{s_{NN}}$ = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality. Data from $\sqrt{s_{NN}}$ = 7.7 - 27 GeV are from BES-II (obtained with RefMult3X except 27 GeV where RefMult3 is used). Data from $\sqrt{s_{NN}}$ = 39 - 200 GeV are from BES-I (RefMult3).

More…

Measurement of Two-Point Energy Correlators Within Jets in $p$+$p$ Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Aboona, B.E. ; Adam, J. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 135 (2025) 111901, 2025.
Inspire Record 2893750 DOI 10.17182/hepdata.157540

Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.

12 data tables

Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c

Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.

Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.

More…

Measurements of $\varUpsilon$ States Production in $\textit{p+p}$ Collisions at $\sqrt{s} = 500\:\mathrm{GeV}$ with STAR: Cross Sections, Ratios, and Multiplicity Dependence

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 112 (2025) 032004, 2025.
Inspire Record 2877008 DOI 10.17182/hepdata.157010

We report measurements of $\varUpsilon(1S)$, $\varUpsilon(2S)$ and $\varUpsilon(3S)$ production in $\textit{p+p}$ collisions at $\sqrt{s}=500\:\mathrm{GeV}$ by the STAR experiment in year 2011, corresponding to an integrated luminosity $\mathcal{L}_{int}=13\:\mathrm{pb^{-1}}$. The results provide precise cross sections, transverse momentum ($p_{T}$) and rapidity ($y$) spectra, as well as cross section ratios for $p_{\mathrm{T}}<10\:\mathrm{GeV/c}$ and $|y|<1$. The dependence of the $\varUpsilon$ yield on charged particle multiplicity has also been measured, offering new insights into the mechanisms of quarkonium production. The data are compared to various theoretical models: the Color Evaporation Model (CEM) accurately describes the $\varUpsilon(1S)$ production, while the Color Glass Condensate + Non-relativistic Quantum Chromodynamics (CGC+NRQCD) model overestimates the data, particularly at low $p_{T}$. Conversely, the Color Singlet Model (CSM) underestimates the rapidity dependence. These discrepancies highlight the need for further development in understanding the production dynamics of heavy quarkonia in high-energy hadronic collisions. The trend in the multiplicity dependence is consistent with CGC/Saturation and String Percolation models or $\varUpsilon$ production happening in multiple parton interactions modeled by PYTHIA8.

23 data tables

The invariant mass distribution of electron pairs collected from p+p collisions at 500 GeV.

Single electron efficiencies.

Upsilon reconstruction efficiencies.

More…

Precision measurement of the longitudinal double-spin asymmetry for dijet production at intermediate pseudorapidity in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 112 (2025) 012003, 2025.
Inspire Record 2854313 DOI 10.17182/hepdata.156055

The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.

6 data tables

$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.

More…

Light Nuclei Femtoscopy and Baryon Interactions in 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Lett.B 864 (2025) 139412, 2025.
Inspire Record 2837311 DOI 10.17182/hepdata.156057

We report the measurements of proton-deuteron ($p$-$d$) and deuteron-deuteron ($d$-$d$) correlation functions in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV using fixed-target mode with the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). For the first time, the source size ($R_{G}$), scattering length ($f_{0}$), and effective range ($d_{0}$) are extracted from the measured correlation functions with a simultaneous fit. The spin-averaged $f_0$ for $p$-$d$ and $d$-$d$ interactions are determined to be -5.28 $\pm$ 0.11(stat.) $\pm$ 0.82(syst.) fm and -2.62 $\pm$ 0.02(stat.) $\pm$ 0.24(syst.) fm, respectively. The measured $p$-$d$ interaction is consistent with theoretical calculations and low-energy scattering experiment results, demonstrating the feasibility of extracting interaction parameters using the femtoscopy technique. The reasonable agreement between the experimental data and the calculations from the transport model indicates that deuteron production in these collisions is primarily governed by nucleon coalescence.

3 data tables

Proton-Deuteron correlation function in 3 GeV Au+Au collisions.

Deuteron-Deuteron correlation function in 3 GeV Au+Au collisions.

Source size of p-d and d-d correlation function


Temperature Measurement of Quark-Gluon Plasma at Different Stages

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Nature Commun. 16 (2025) 9098, 2025.
Inspire Record 2755369 DOI 10.17182/hepdata.147195

In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.

5 data tables

The inclusive dielectron invariant mass spectra of 27 GeV in 0-80% centrality.

The inclusive dielectron invariant mass spectra of 54.4 GeV in 0-80% centrality.

The charged multiplicity normalzied excess yield of 27 GeV in 0-80% centrality.

More…

Photon and neutral pion production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 70 (2004) 044902, 2004.
Inspire Record 642374 DOI 10.17182/hepdata.98925

We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.

9 data tables

Data for the electron-positron invariant mass plots

dE/dx deviant distributions of positive daughters

Data for the number of reconstructed photon conversions as a function of conversion location plots

More…

Azimuthal anisotropy at RHIC: The first and fourth harmonics.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 127 (2021) 069901, 2021.
Inspire Record 631713 DOI 10.17182/hepdata.102322

We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.

6 data tables

$v_1$ of charged particles as a function of pseudorapidity for 10-70% centrality. Non-flow systematic uncertainties are approximately 20%.

$v_2$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

$v_4$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

More…

Cross sections and transverse single-spin asymmetries in forward neutral pion production from proton collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 171801, 2004.
Inspire Record 631869 DOI 10.17182/hepdata.101348

Measurements of the production of forward high-energy pi0 mesons from transversely polarized proton collisions at \sqrt{s}=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x_F below about 0.3, and becomes positive and large at higher x_F, similar to the trend in data at \sqrt{s}<=20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p_T>1 GeV/c at a polarized proton collider.

2 data tables

Inclusive $\pi^{0}$ production cross section versus leading $\pi^{0}$ energy ($E_{\pi}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $E_{\pi}$, as the PFPD was at a fixed pseudorapidity ($\eta$). The inner error bars are statistical, and are smaller than the symbols for most points. The outer error bars combine these with the $E_{\pi}$-dependent systematic errors. The curves are NLO pQCD calculations evaluated at $\eta=3.8$ [29-31].

Analyzing powers versus Feynman $x$ ($x_{F}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $x_{F}$. The solid points are for identified $\pi^{0}$ mesons. The open points are for the total energy ($E_{\scriptsize{\mbox{tot}}}$), shifted by $x_{F}+0.01$. The inner error bars are statistical, and the outer combine these with the point-to-point systematic errors. The curves are from pQCD models evaluated at $p_{T}=1.5$ GeV/c [14-17]. The $A_{N}$ values are proportional to $A^{\scriptsize{\mbox{CNI}}}_{N}$, assumed to be 0.013 at 100 GeV.