Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.
No description provided.
We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
None
No description provided.
Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV
TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.
VALUE OF ASSYMETRY IN CORRELATIONS.
No description provided.
Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.
No description provided.
No description provided.
No description provided.
Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations.
ASYMMETRY FOR DATA CORRECTED WITH IF MODEL (ALPHA-S=0.12).
ASSYMETRY FOR DATA CORRECTED WITH SF MODEL (ALPHA-S=0.19).
No description provided.
The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.
ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.
No description provided.
Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.
FIRST ORDER QCD.
SECOND ORDER QCD.
Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.