Analyzing powers for pi+- p(pol.) elastic scattering between 87-MeV and 263-MeV.

Hofman, G.J. ; Smith, G.R. ; Ambardar, T. ; et al.
Phys.Rev.C 58 (1998) 3484-3493, 1998.
Inspire Record 483008 DOI 10.17182/hepdata.25722

Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.

18 data tables

Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

More…

Measurement of the pbar p -> Ks Ks Reaction from 0.6 to 1.9 GeV/c

Evangelista, C. ; Palano, A. ; Drijard, D. ; et al.
Phys.Rev.D 56 (1997) 3803-3810, 1997.
Inspire Record 446452 DOI 10.17182/hepdata.41669

The pbar p -> Ks Ks -> 4pi+/- cross section was measured at incident antiproton momenta between 0.6 and 1.9 GeV/c using the CERN Low Energy Antiproton Ring (LEAR). This investigation was part of a systematic study of in-flight antiproton-proton annihilations into two-neutral-meson final states in a search for hadronic resonances. A coarse scan of the pbar p -> Ks Ks cross section as a function of center-of-mass energy between 1.964 and 2.395 GeV/c^2 and a fine scan of the region surrounding the Xi(2220) are presented. Upper limits on the product branching ratio BR(Xi -> pbar p)BR(Xi -> Ks Ks) are determined for a wide range of mass and width assumptions based on the non-observation of the Xi(2220). A rise in the pbar p -> Ks Ks cross section is observed near 2.15 GeV/c^2, which is consistent with the f2(2150) resonance.

1 data table

No description provided.


anti-p p annihilation cross-section at very low-energy

The OBELIX collaboration Bertin, A ; Bruschi, M ; Capponi, M ; et al.
Phys.Lett.B 369 (1996) 77-85, 1996.
Inspire Record 428399 DOI 10.17182/hepdata.28410

The p̄p total annihilation cross section has been measured, with the Obelix apparatus at LEAR, at ten values of the antiproton incident momentum between 43 and 175 MeV/ c . The values of the cross section show that the well known 1 p behaviour of the annihilation cross section is drastically modified at very low momenta, which demonstrates the important role of the Coulomb force in low energy p̄p interaction. Moreover, they do not present any explicit resonant behaviour. Finally, when compared to potential model calculations, the data suggest that the percentage of P-wave in p̄p interaction around 50 MeV/ c antiproton incident momentum is less than 5%.

1 data table

No description provided.


Charge exchange anti-p p ---> anti-n n differential cross-sections between 546-MeV/c and 1287-MeV/c

Ahmidouch, A. ; Heer, E. ; Hess, R. ; et al.
Phys.Lett.B 364 (1995) 116-120, 1995.
Inspire Record 407478 DOI 10.17182/hepdata.28461

The differential cross section of the charge-exchange reaction p p → n n has been measured at the CERN Low Energy Antiproton Ring (LEAR) at seven p momenta in the range 546–1287 MeV/ c . A pentanol polarized target has been used and the neutron and the antineutron have been detected in coincidence. The data cover most of the angular range.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables

No description provided.

No description provided.

No description provided.

More…

First measurement of the anti-p p ---> anti-n n depolarization parameter D(0n0n) at 546-MeV/c and 875-MeV/c

Ahmidouch, A. ; Heer, E. ; Hess, R. ; et al.
Nucl.Phys.B 444 (1995) 27-58, 1995.
Inspire Record 405013 DOI 10.17182/hepdata.32839

The depolarization parameter Donon of the p dash p → n dash n charge exchange reaction has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR) at two antiproton momenta, 546 and 875 MeV/ c . The transverse polarization of the recoil neutron was analyzed using a large-acceptance neutron polarimeter made up of two parallel plastic scintillator planes. D 0 n 0 n is usually less than 0.35 which suggests that the spin-spin amplitudes dominate in the scattering matrix. Results are compared with the predictions of various N dash N potential models. The agreement is in general satisfactory.

2 data tables

No description provided.

No description provided.


High precision measurement of the $\overline{p}p \to \overline{n}n$ charge exchange differential cross-section

Birsa, R. ; Bradamante, F. ; Bressan, A. ; et al.
Phys.Lett.B 339 (1994) 325-331, 1997.
Inspire Record 382031 DOI 10.17182/hepdata.27114

The differential p p → n n charge-exchange cross section has been measured at the CERN Low Energy Antiproton Ring (LEAR), at two incident p momenta, 601 and 1202 MeV/c. features of the differential cross-section near the forward direction, i.e. a sharp peak at 0° scattering angle followed by an energy dependent dip-bump structure, are confirmed and measured with good precision and high statistical accuracy. The data show very clearly that the shape of the cross-section is a manifestation of the pion-exchange amplitude, and a simple extrapolation to the pion pole already indicates that the pion-nucleon coupling constant f c 2 can be determined with good precision.

2 data tables

No description provided.

Corrected with data from PL B405,389.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Andivahis, L. ; Bosted, Peter E. ; Lung, A. ; et al.
Phys.Rev.D 50 (1994) 5491-5517, 1994.
Inspire Record 372566 DOI 10.17182/hepdata.22354

The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.

8 data tables

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

More…

Measurement of the analyzing power of the charge exchange anti-p p ---> anti-n n reaction in the momentum range 546-MeV/c - 1287-MeV/c at LEAR

Birsa, R. ; Bradamante, F. ; Bressan, A. ; et al.
Nucl.Phys.B 403 (1993) 25-64, 1993.
Inspire Record 354500 DOI 10.17182/hepdata.37129

Final results of the measurement of the analysing power A On of the p p → n n reaction are presented. Eight measurements in the range 546–1287 MeV/ c incoming p momentum have been performed over the full angular range using a solid polarized proton target and the Low Energy Antiproton Ring (LEAR) at CERN antiproton extracted beams.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the electric and magnetic form-factors of the neutron from Q**2 = 1.75-GeV/c**2 to 4-GeV/c**2

Lung, A. ; Stuart, L.M. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 70 (1993) 718-721, 1993.
Inspire Record 342252 DOI 10.17182/hepdata.19739

Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.

2 data tables

Magnetic form factors.

Electric form factors.