Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.
Interactions of 683-MeV/c negative pions with protons were investigated using the BNL 14-in. hydrogen bubble chamber in a 17-kG field. Two thousand elastic scatterings were analyzed, yielding a cross section of 18.9±1.0 mb. No evidence for powers of cosθ higher than the second was observed in the elastic angular distribution. The angular distribution obtained was dσdω=(0.384±0.026)+(1.70±0.06)cosθ+(3.36±0.11)cos2θ mb/sr. The single-pion production reactions π−+p→π−+π0+p and π−+p→π−+π++n were studied in detail. A total of 441 π0 productions and 833 π+ productions were analyzed giving cross sections of 3.99±0.50 and 7.50±0.80 mb, respectively. The differential distributions for these inelastic processes are presented and compared with the predictions of the model of Olsson and Yodh. The distribution of events on the Dalitz plots for π0 production is accounted for by the model. However, for the π+ reaction, the model (so far developed) does not describe adequately the distribution of events on the Dalitz plot. In particular, the model fails to account for the enhancement at high (π+π−) effective masses in ππ mass distribution. The center-of-mass angular distributions for π0 and π+ production reactions are presented and compared with the model.
No description provided.
No description provided.
No description provided.
We present a new technique for analyzing multibody states. This analysis makes possible the selection of samples of events that contain only resonances, particle correlations, or phase space. A unique feature of this analysis is that every event in the data is assigned to a particular sample. The three-body final state π++p→p+π++π0 is analyzed as an example.
No description provided.
We report on the observation of 17Ξ o + p interactions in the Berkeley 72″ Hydrogen Bubble Chember, Cross-sections are calculated for both elastic and inelastic channels.
EACH CROSS SECTION BASED ON ONE EVENT, EXCEPT AS NOTED.
None
No description provided.
No description provided.
AVERAGED OVER ALL PRODUCTION ANGLES.
We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.
Results on the elastic K − π − scattering have been obtained from a study of the K − π − system in 15 000 events of the type K − p→K − π − p π + at a K − beam momentum of 4.25 GeV/ c . The on-mass-shell values of the spherical harmonic moments of the K − π − scattering angular distribution and the K − π − elastic cross section have been obtained by extrapolation to the pion pole. From these values we determined the s- and p-wave phase shifts δ 0 3 and δ 1 3 as a function of the effective mass of the K − π − system between threshold and 1.25 GeV/ c 2 . The value of | δ 0 3 | is smaller than 17° for all mass values and the existence of a p-wave cannot be neglected. At m K − π − = 1.18 GeV/ c 2 there are two solutions for the phase shifts. On the average, the cross section of the K − π − elastic scattering over the region of the effective mass considered amounts to approximately 2.5 mb.
The errors combine statistical and systematical effects.
The errors are statistical.
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
SLOPE FITTED OVER 0.05 < -T < 0.3 GEV**2.
No description provided.
No description provided.
This paper contains the results of a study of the reaction K−p→Λπ0 in the center-of-mass-system-energy region of 1647 to 1715 MeV. An energy-dependent partial-wave analysis was performed in this channel. Two allowable solutions were obtained. The first solution in this region contains the D13[t=0.08±0.01, Γ(ER)=44±11 MeV, and ER=1671±3 MeV] partial wave as the only resonant amplitude; the second solution contains both the P11[t=0.16±0.01, Γ(ER)=81±10 MeV, and ER=1671±2 MeV] and the D13[t=0.17±0.01, Γ(ER)=76±5 MeV, and ER=1655±2 MeV] partial wave as resonant.
No description provided.
LAMBDA DECAY-ASYMMETRY PARAMETER TIMES COEFFICIENTS OF ASSOCIATED LEGENDRE POLYNOMIAL EXPANSION.
No description provided.