The production of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ charmed mesons has been measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=7$ TeV at the LHC, using data corresponding to an integrated luminosity of $280\,$nb$^{-1}$. The charmed mesons have been reconstructed in the range of transverse momentum $3.5<p_{\rm T}(D)<100$ GeV and pseudorapidity $|\eta(D)|<2.1$. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for $D^{*\pm}$ and $D^\pm$ production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible $D$ cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange $D$ mesons produced in a vector state, and the total cross section of charm production at $\sqrt{s}=7$ TeV were derived.
The visible low-$p_T$, $3.5<p_T(D)<20\rm{\ GeV}$, and high-$p_T$, $20<p_T(D)<100\rm{\ GeV}$, cross sections of $D^{*\pm}$, $D^\pm$ and $D^\pm_s$ production with $|\eta|<2.1$. The data uncertainties are the total uncertainties obtained as sums in quadrature of the statistical, systematic, luminosity and branching-fraction uncertainties.
The measured differential cross sections $\rm{d}\sigma/\rm{d}p_T$ of $D^{*\pm}$ and $D^\pm$ production with $|\eta|<2.1$. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainties corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.
The measured differential cross sections $\rm{d}\sigma/\rm{d}|\eta|$ of $D^{*\pm}$ and $D^\pm$ production with $3.5<p_T<20\,$GeV. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainty fractions corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.
The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.
Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.
A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb-1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity and transverse energy in the kinematic range between 100 GeV and 1000 GeV and in the regions of pseudorapidity less than 1.37 and between 1.52 and 2.37. The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of transverse energy and pseudorapidity.
Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| < 1.37 as a function of E_T^gamma with statistical and systematic uncertainties.
Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| 1.52-2.37 as a function of E_T^gamma with statistical and systematic uncertainties.
Measured inclusive prompt photon production cross section in the ET_gamma region > 100 GeV as a function of |eta(gamma)| with statistical and systematic uncertainties.
The production cross sections of the inclusive Drell-Yan processes W to l nu and Z/gamma to ll (l=e,mu) are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb^-1 collected in 2010, the precision of these measurements reaches a few per cent. The integrated and the differential W+- and Z/gamma cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at NNLO.
Cross sections for Z0 production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.
Correlated Systematic Uncertainties for Z0 production.
Cross sections for W- production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.
The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.
The integrated cross section for J/PSI --> MU+ MU- decay.
Cross section as a function of PT. Statistical errors only.
With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.
Total cross section for DIS D*+- production in the specified kinemtaic range.
DIS cross section as a function of the transverse D* momentum in the laboratory frame.
DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.
Photoproduction data collected with the H1 detector at HERA in 1994 are used to study the cross-sections for inclusive charged particle production and the structure of the photon. The differential cross-sections dsigma/dpT2, for |eta| < 1 in the HERA laboratory frame, and dsigma/deta for pT > 2 GeV/c and pT > 3 GeV/c have been measured. Model calculations of these cross-sections, based on perturbative QCD, indicate that the results are sensitive to the parton densities of the photon as well as to higher order effects, which are phenomenologically treated by multiple interactions. This sensitivity is exploited to determine the leading order x_gamma distribution of partons in the photon using a new method based on high pT charged particles. The gluon content of the photon is extracted and found to rise with decreasing x_gamma.
Inclusive gamma-p cross section for charged particles in the photoproduction data.
The measured differential pseudorapidity distribution for inclusive chargedparticle production.
Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 < Q^2 < 80 GeV^2. Cross sections are presented where Y has mass M_Y < 1.6 GeV, the squared four-momentum transferred at the proton vertex satisfies |t| < 1 GeV^2 and the two jets each have transverse momentum p^jet_T > 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated.
Transverse momentum distribution for two jet production in photoproduction events (one entry per jet).
Transverse momentum distribution for two jet production in DIS events (one entry per jet).
Differential pseudo rapidity distribution in the lab frame for photoproduction data (one entry per jet).
The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.
Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.