Cross sections of 27 radionuclides formed by the interaction of 300-GeV protons with silver were determined on the assumption that the cross section of the reaction Al27(p, 3pn) remains the same as at 10-30 GeV. The results are compared with the corresponding values obtained at 11.5 GeV. The average value of the ratio σ300σ11.5 for all products ranging from Be7 to Ag106m is 0.91±0.07 and is independent of mass number.
No description provided.
SIG(C=11.5) means the cross section for 11.5 GeV Plab, obtained in previousexperiment.
The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.
PT RANGE FROM 0 TO INFINITY.
PT RANGE FROM 0 TO INFINITY.
No description provided.
Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, $<\beta\gamma>_{L}$, as a function of the logarithm of beam energy.
No description provided.
No description provided.
No description provided.
We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.
10 pct most central collisions.
10 to 38 pct most central collisions.
38 to 66 pct most central collisions.
In an inclusive experiment, isotopically resolved fragments, 3≤Z≤13, produced in high-energy proton-nucleus collisions have been studied using a low mass time-of-flight, gas ΔE-silicon E spectrometer and an internal gas jet. Measurement of the kinetic energy spectra from 5 to 100 MeV enabled an accurate determination of fragment cross sections from both xenon and krypton targets. Fragment spectra showed no significant dependence on beam energy for protons between 80 and 350 GeV/c. The observed isobaric yield is given by YαAf−τ, where τ∼2.6 for both targets; this also holds for correlated fragment data. The power law is the signature for the fragment formation mechanism. We treat the formation of fragments as a liquid-gas transition at the critical point. The critical temperature Tc can be determined from the fragment isotopic yields, provided one can set an energy scale for the fragment free energy. The high energy tails of the kinetic energy spectra provide evidence that the fragments originate from a common remnant system somewhat lighter than the target which disassembles simultaneously via Coulomb repulsion into a multibody final state. Fragment Coulomb energies are about 110 of the tangent sphere values. The remnant is characterized by a parameter T, obtained from the high energy tails of the kinetic energy distributions. T is interpreted as reflecting the Fermi momentum of a nucleon in this system. Since T≫Tc, and T is approximately that value expected for a cold nucleus, we conclude that the kinetic energy spectra are dominated by this nonthermal contribution. [NUCLEAR REACTIONS Xe(p,X), Kr(p,X), 80≤Eq≤350 GeV; measured σ(E,θ), X=Li to Al, θ=34∘. Fragmentation.]
No description provided.
Differential cross sections for the emission of intermediate-mass fragments (3≤Zf≤14) at 48.5° and 131.5° in the interaction of xenon with 1–19 GeV protons have been measured. The excitation functions rise sharply with energy up to ∼10 GeV and then level off. The energy spectra were fitted with an expression based on the phase transition droplet model. Excellent fits with reasonable parameters were obtained for Ep≥9 GeV. Below 6 GeV, the fits show an increasing contribution with decreasing energy from another mechanism, believed to be binary breakup. A droplet model fit to the cross sections ascribed to the multifragmentation component is able to reproduce the variation of the yields with both fragment mass and proton energy. The results are interpreted in terms of the phase diagram of nuclear matter.
No description provided.
No description provided.
No description provided.
Nuclear reactions induced in silver by 25.2 GeV 12C ions have been studied by the activation technique and compared with those induced by 300 GeV protons.
Two sets of data were normalized to each other by requiring that the weighted mean of 15 cross section ratios for products in A = 66 - 90 region be equal to unity. SIG(C=PROTON) stands for the reacion with proton beam (PLAB=300 GeV) with the same final state.
Experiment E735 searched for evidence of the transition to quark-gluon plasma in p p collisions at √ s = 1.8 TeV. Using data from a high statistics run in 1988–1989, results are presented on multiplicity distributions, hyperon and phi production, and Bose-Einstein correlations. Some data were also taken at lower collision energies and results will be compared to previous experiments.
No description provided.
We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.
ABOUT SIX BILLION 10% MOST CENTRAL INTERACTIONS.
We present measurements from Brookhaven Experiment 864 of neutron invariant multiplicity in 11.5 A GeV/c Au+Pb collisions. The measurements span a rapidity range from center-of-mass to beam rapidity (y(beam)=3.2) and are presented as a function of event centrality. The results are compared with E864 measurements of proton invariant multiplicity and an average n/p ratio at hadronic freeze-out of 1.19+-.08 is determined for the rapidity range y=1.6 to y=2.4. We discuss briefly the implications of this ratio within a simple equilibrium model of the collision system.
The errors are statistical and systematic errors added in quadrature. 10% most central events.