Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.
Transverse component of the fragmentation function.
Longitudinal component of the fragmentation function.
Asymmetry component of the fragmentation function.
None
.
.
.
None
No description provided.
No description provided.
No description provided.
The study of neutral strange particle production in antineutrino-induced neutral current interactions is presented. The total multiplicity of neutral strange particles and the K 0 multiplicity in the current fragmentation region ( z >0.3) are used to estimate in two ways the coupling strength of the weak neutral current to the strange quark.
No description provided.
No description provided.
No description provided.
We present results on inclusive particle production in the antineutrino charged current induced hadron jets observed in the Fermilab 15 ft bubble chamber. Fractional energy distributions, particle ratios and average multiplicities of the hadrons in the jets are measured. Ratios between the inclusive production rates of different mesons in the jets are studied to seek evidence for the d-quark origin of the observed hadrons. Good over-all agreement with the hypothesis of d-quark fragmentation with universal fragmentation functions obeying isospin systematics is established.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.