Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.


Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

2 data tables

Total integrated cross section.

The differential PT cross section as a function of PT.


Measurement of the inclusive phi cross-section in pp collisions at sqrt(s) = 7 TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett.B 703 (2011) 267-273, 2011.
Inspire Record 919315 DOI 10.17182/hepdata.58143

The cross-section for inclusive phi meson production in pp collisions at a centre-of-mass energy of sqrt(s) = 7 TeV has been measured with the LHCb detector at the Large Hadron Collider. The differential cross-section is measured as a function of the phi transverse momentum p_T and rapidity y in the region 0.6 < p_T < 5.0 GeV/c and 2.44 < y < 4.06. The cross-section for inclusive phi production in this kinematic range is sigma(pp -> phi X) = 1758 pm 19(stat) ^{+43}_{-14}(syst) pm 182(scale) microbarn, where the first systematic uncertainty depends on the p_T and y region and the second is related to the overall scale. Predictions based on the Pythia 6.4 generator underestimate the cross-section.

8 data tables

Integrated PHI production cross section in the observed kinematic region.

Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.44-2.62 and 2.62-2.80.

Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.80-2.98 and 2.98-3.16.

More…

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 84 (2011) 052006, 2011.
Inspire Record 915978 DOI 10.17182/hepdata.60557

This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

6 data tables

Diphoton production cross section as a function of the diphoton invariant mass.

Diphoton production cross section as a function of the diphoton transverse momentum.

Diphoton production cross section as a function of the azimuthal angle difference in the two photons.

More…

Jet Production in ep Collisions at Low Q^2 and Determination of alpha_s

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 67 (2010) 1-24, 2010.
Inspire Record 838435 DOI 10.17182/hepdata.31170

The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5<Q^2<100 GeV^2 and at inelasticity 0.2<y<0.7 using data recorded by the H1 detector at HERA in the years 1999 and 2000, corresponding to an integrated luminosity of 43.5 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q^2 and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction xi. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling alpha_s.

13 data tables

Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dQ^2}}$.

2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{dQ^2}}$.

3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{dQ^2}}$.

More…

Prompt Photons in Photoproduction at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 66 (2010) 17-33, 2010.
Inspire Record 835534 DOI 10.17182/hepdata.56856

The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.

17 data tables

Measured inclusive prompt photon cross section in the defined phase space.

Measured prompt photon plus jet cross section in the defined phase space.

Bin averaged differential cross section as a function of ET in the defined phase space.

More…

Measurement of beauty production in DIS and F_2^bbbar extraction at ZEUS

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 69 (2010) 347-360, 2010.
Inspire Record 855232 DOI 10.17182/hepdata.56879

Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.

18 data tables

Total visible cross section for BBAR production and decay into MUON+JET.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of the muon transverse momentum.

More…

Measurement of the D* Meson Production Cross Section and F_2^{ccbar}, at High Q^2, in ep Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Phys.Lett.B 686 (2010) 91-100, 2010.
Inspire Record 837434 DOI 10.17182/hepdata.55370

The inclusive production of D*(2010) mesons in deep-inelastic ep scattering is measured in the kinematic region of photon virtuality 100 &lt; Q^2 &lt; 1000 GeV^2 and inelasticity 0.02 &lt; y &lt; 0.7. Single and double differential cross sections for inclusive D* meson production are measured in the visible range defined by |eta(D*)| &lt; 1.5 and p_T(D*) > 1.5 GeV. The data were collected by the H1 experiment during the period from 2004 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. The charm contribution, F_2^{ccbar}, to the proton structure function F_2 is determined. The measurements are compared with QCD predictions.

12 data tables

Total inclusive cross section for D*+- production.

Single differential cross section DSIG/DPT for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.

Single differential cross section DSIG/DETARAP for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.

More…

Production of psi(2S) Mesons in ppbar Collisions at 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 80 (2009) 031103, 2009.
Inspire Record 820328 DOI 10.17182/hepdata.57249

We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| < 0.6 we measure the integrated inclusive cross section sigma(ppbar -> psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.

2 data tables

The differential cross section times the dimuon branching fraction as a function of pT.

The integrated inclusive differential cross section for PSI(3685).


Strangeness Production at low $Q^2$ in Deep-Inelastic $ep$ Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 61 (2009) 185-205, 2009.
Inspire Record 810046 DOI 10.17182/hepdata.45305

The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 &lt; Q^2 &lt; 100 GeV^2 and the inelasticity 0.1 &lt; y &lt; 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

31 data tables

Visible cross section for the production of K0S and LAMBDA(BAR).

Ratio of strange baryon to meson production.

Ratio of K0S to charged hadron production.

More…

Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 63 (2009) 171-188, 2009.
Inspire Record 810112 DOI 10.17182/hepdata.51856

The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.

21 data tables

Production cross section for (D+ + D-) mesons.

Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.

Measured D+- cross section as a function of Q**2.

More…

Events with Isolated Leptons and Missing Transverse Momentum and Measurement of W Production at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 64 (2009) 251-271, 2009.
Inspire Record 810292 DOI 10.17182/hepdata.53047

Events with high energy isolated electrons, muons or tau leptons and missing transverse momentum are studied using the full e^\pm p data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^{-1}. Within the Standard Model, events with isolated leptons and missing transverse momentum mainly originate from the production of single W bosons. The total single W boson production cross section is measured as 1.14 \pm 0.25 (stat.) \pm 0.14 (sys.) pb, in agreement with the Standard Model expectation. The data are also used to establish limits on the WW\gamma gauge couplings and for a measurement of the W boson polarisation.

2 data tables

Total single W boson production cross section.

Differential single W boson production cross section.


Beauty photoproduction using decays into electrons at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 072001, 2008.
Inspire Record 786814 DOI 10.17182/hepdata.45317

Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.

7 data tables

Total cross sections for electrons from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

More…

Three- and Four-jet Production at Low x at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Eur.Phys.J.C 54 (2008) 389-409, 2008.
Inspire Record 767896 DOI 10.17182/hepdata.45429

Three- and four-jet production is measured in deep-inelastic $ep$ scattering at low $x$ and $Q^2$ with the H1 detector using an integrated luminosity of $44{.}2 {\rm pb}^{-1}$. Several phase space regions are selected for the three-jet analysis in order to study the underlying parton dynamics from global topologies to the more restrictive regions of forward jets close to the proton direction. The measurements of cross sections for events with at least three jets are compared to fixed order QCD predictions of ${\mathcal{O}}(\alpha_{\rm s}^2)$ and ${\mathcal{O}}(\alpha_{\rm s}^3) $ and with Monte Carlo simulation programs where higher order effects are approximated by parton showers. A good overall description is provided by the ${\mathcal{O}}(\alpha_{\rm s}^3) $ calculation. Too few events are predicted at the lowest $x \sim 10^{-4}$, especially for topologies with two forward jets. This hints to large contributions at low $x$ from initial state radiation of gluons close to the proton direction and unordered in transverse momentum. The Monte Carlo program in which gluon radiation is generated by the colour dipole model gives a good description of both the three- and the four-jet data in absolute normalisation and shape.

23 data tables

Differential cross section as a function of the minimum number of jet for events with at least 3-jets.

Differential cross section as a function of X for events with at least 3-jets.

Differential cross section for events with at least 3-jets as a function of the pseudorapidity of each jet.

More…

Dijet Cross Sections and Parton Densities in Diffractive DIS at HERA

The H1 collaboration Aktas, A. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 10 (2007) 042, 2007.
Inspire Record 759012 DOI 10.17182/hepdata.45425

Differential dijet cross sections in diffractive deep-inelastic scattering are measured with the H1 detector at HERA using an integrated luminosity of 51.5 pb-1. The selected events are of the type ep --> eXY, where the system X contains at least two jets and is well separated in rapidity from the low mass proton dissociation system Y. The dijet data are compared with QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from measurements of inclusive diffractive deep-inelastic scattering. The prediction describes the dijet data well at low and intermediate zpom (the fraction of the momentum of the diffractive exchange carried by the parton entering the hard interaction) where the gluon density is well determined from the inclusive diffractive data, supporting QCD factorisation. A new set of diffractive parton distribution functions is obtained through a simultaneous fit to the diffractive inclusive and dijet cross sections. This allows for a precise determination of both the diffractive quark and gluon distributions in the range 0.05&lt;zpom&lt;0.9. In particular, the precision on the gluon density at high momentum fractions is improved compared to previous extractions.

10 data tables

Integrated cross section within the specified kinematic range.

Bin averaged differential cross sections of diffractive di-jet production as a function of X(NAME=POMERON).

Bin averaged differential cross sections of diffractive di-jet production as a function of Y.

More…

Inclusive Jet Production in Photon-Photon Collisions at $\sqrt{s_{ee}}$ from 189 to 209 GeV

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 658 (2008) 185-192, 2008.
Inspire Record 754316 DOI 10.17182/hepdata.48798

Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.

2 data tables

Inclusive jet cross section for the absolute jet pseudorapidity < 1.0.

Inclusive jet cross section for the absolute jet pseudorapidity < 1.5.


Diffractive Photoproduction of D*+/-(2010) at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 301-315, 2007.
Inspire Record 747652 DOI 10.17182/hepdata.45627

Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.

12 data tables

Total cross section integrated over the given kinematic range.

Ratio of diffractive to inclusive D* cross section.

Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).

More…

Measurement of D*+- meson production in ep scattering at low Q^2

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 649 (2007) 111-121, 2007.
Inspire Record 745058 DOI 10.17182/hepdata.45591

The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 &lt; Q^2 &lt; 0.7 GeV^2 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+ -> D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 &lt; y &lt; 0.85, 1.5 &lt; p_T(D*) &lt; 9.0 GeV and |eta(D*)| &lt; 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.

7 data tables

Total cross section measurement.. The second DSYS error is due to the uncertainty in the branching ratio.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of Y.

More…

Measurement of the B+ production cross section in p anti-p collisions at s**(1/2) = 1960-GeV.

The CDF collaboration Abulencia, A. ; Adelman, Jahred A. ; Affolder, T. ; et al.
Phys.Rev.D 75 (2007) 012010, 2007.
Inspire Record 733991 DOI 10.17182/hepdata.63814

We present a new measurement of the $B^+$ meson differential cross section $d\sigma/d p_T$ at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 739pb$^{-1}$ collected with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider. $B^+$ candidates are reconstructed through the decay $B^+ \to J/\psi K^+$, with $J/\psi \to \mu^+ \mu^-$. The integrated cross section for producing $B^+$ mesons with $p_T \geq 6$ GeV/c and $|y| \leq 1$ is measured to be $2.78 \pm 0.24 \mu$b

2 data tables

The differential cross section (nb/GeV/c) for B+ mesons as a function of pT.

The The B+ production cross section.


Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

62 data tables

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production with two jets.

More…

Inclusive production of charged hadrons in photon photon collisions.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 651 (2007) 92-101, 2007.
Inspire Record 734955 DOI 10.17182/hepdata.48554

The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.

12 data tables

Differential inclusive charged hadron production cross section as a function of PT.

Differential inclusive charged hadron production cross section as a function of PT.

Differential inclusive charged hadron production cross section as a function of PT.

More…