Date

Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

1 data table

130 GeV is sqrt(S) per nucleon-nucleon collision. N(C=N_NUCLEONS) and N(C=N_COLLISONS) are the number of participating nucleons and binary collisions. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Photoproduction of Phi(1020) mesons on the proton at large momentum transfer.

The CLAS collaboration Anciant, E. ; Auger, T. ; Audit, G. ; et al.
Phys.Rev.Lett. 85 (2000) 4682-4686, 2000.
Inspire Record 528835 DOI 10.17182/hepdata.19491

The cross section for $\phi$ meson photoproduction on the proton has been measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the data support a model where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark in the proton and in the $\phi$.

1 data table

The differential PHI photoproduction cross section. The errors shown are the quadratic sum of the statistics and the systematic uncertainties which include 3 PCT for normalization, 5 PCT for acceptance and 5-15 PCT for background subtraction.


New analysis of the radiative decay omega --> eta gamma in proton - anti-proton annihilation at rest

Case, T. ; Crowe, K.M. ; Heinsius, F.H. ; et al.
Phys.Rev.D 61 (2000) 032002, 2000.
Inspire Record 522711 DOI 10.17182/hepdata.22247

We report on a measurement of the branching ratio of the rare decay ω→ηγ relative to the well known decay ω→π0γ. The ω’s are produced in pp¯→ηω and pp¯→π0ω. Eigenstate mixing and interference effects of the ω and ρ0 are taken into account, as well as coherent interference with the background. We find evidence for the non-resonant annihilation channel B(pp¯→ηηγ)=(3.5±1.3)×10−5 and limit the value of B(ω→ηγ) to the range of (0.7to5.5)×10−4 depending on the degree of coherence with the background.

1 data table

No description provided.


Anti-p d annihilation at rest into pi+ pi- pi- p(spectator).

The Crystal Barrel collaboration Abele, A. ; Adomeit, J. ; Amsler, C. ; et al.
Phys.Lett.B 450 (1999) 275-280, 1999.
Inspire Record 500218 DOI 10.17182/hepdata.28089

A study of antiproton annihilation in liquid deuterium into π + π − π − and a spectator proton is presented. For a long time this reaction resisted a description by final state interactions which is surprising (and disturbing) given the success of the final state interaction model in other annihilation reactions. It is shown that the introduction of ρ (1450) is essential to get a reasonable description of the measured Dalitz plot. This resonance was never tried in previous attempts to understand this data. A possible isospin-2- ππ S-wave contribution was tested, but no evidence was found for such a contribution.

1 data table

No description provided.


Evidence for a pi eta P-wave in anti-p p annihilations at rest into pi0 pi0 eta.

The Crystal Barrel collaboration Abele, A. ; Adomeit, J. ; Amsler, C. ; et al.
Phys.Lett.B 446 (1999) 349-355, 1999.
Inspire Record 498113 DOI 10.17182/hepdata.28121

A partial wave analysis is presented of two high-statistics data samples of protonium annihilation into π 0 π 0 η in liquid and 12 atm gaseous hydrogen. The contributions from the 1 S 0 , 3 P 1 and 3 P 2 initial atomic fine structure states to the two data sets are different. The change of their fractional contributions when going from liquid to gaseous H 2 as calculated in a cascade model is imposed in fitting the data. Thus the uncertainty in the fraction of S-state and P-state capture is minimized. Both data sets allow a description with a common set of resonances and resonance parameters. The inclusion of a π η P-wave in the fit gives supportive evidence for the ρ ̂ (1405) , with parameters compatible with previous findings.

1 data table

No description provided.


Search for d' in pion inclusive spectra from p p interactions.

Abramov, B.M. ; Bulychjov, Sergey A. ; Khanov, A.I. ; et al.
Eur.Phys.J.A 1 (1998) 115-116, 1998.
Inspire Record 468080 DOI 10.17182/hepdata.43711

We report on our measurement of the inclusive spectrum of positive pions from the reaction pp→π++X on a CH2 internal target of the ITEP proton synchrotron at 1.5 GeV/c with a missing

1 data table

No description provided.


Study of the pi0 pi0 eta-prime final state in anti-p p annihilation at rest

The Crystal Barrel collaboration Abele, A. ; Adomeit, J. ; Amsler, C. ; et al.
Phys.Lett.B 404 (1997) 179-186, 1997.
Inspire Record 457856 DOI 10.17182/hepdata.28292

A partial wave analysis of p̄p → π 0 π 0 η ′ has been performed using the η′ → π 0 π 0 η and η ′ → γγ decay modes. The data are dominated by an η ′ recoiling against the ( ππ ) S-wave. In addition, α 2 (1320) → η′π 0 is needed. There is evidence for contributions from α 0 (1450) → η′π 0 . The branching ratio of α 0 (1450) → η′π 0 with respect to ηπ 0 is consistent with the prediction of SU(3).

1 data table

No description provided.


Total reaction and 2n-removal cross-sections of 20-60 A MeV He-4, He-6, He-8, Li-(6-9), Li-11, and Be-10 on Si

Warner, R.E. ; Patty, R.A. ; Voyles, P.M. ; et al.
Phys.Rev.C 54 (1996) 1700-1709, 1996.
Inspire Record 433951 DOI 10.17182/hepdata.25830

Total reaction cross sections, σR, of 20–60A MeV He4,6,8, Li6–9,11, and Be10 were measured by injecting magnetically separated, focused, monoenergetic, identified secondary beams of those projectiles into a Si detector telescope and measuring their energy-deposition spectra. These σR’s, accurate to about 3%, were compared with predictions of optical, strong absorption, and microscopic models. The latter gave the best overall fit to the data, providing long-tailed matter densities were assumed. The best available optical potentials generally overpredicted the data by about 10%. Strong absorption calculations, in which the isospin-dependent term is quite important, were often unsuccessful, especially for projectiles with large neutron excess. Two-neutron removal cross sections were measured for He6 and Li11; the Li11 data were slightly overpredicted by a microscopic model which includes correlation effects for the Li11 valence neutrons. Both 2n and 4n removal from He8 were observed, in about a 2:1 ratio. Subtraction analysis of the data indicates that He4 is a good core within He6 and He8, as is Li9 within Li11. © 1996 The American Physical Society.

9 data tables

Axis error includes +- 3/3 contribution (Statistical uncertainty is negligible).

Axis error includes +- 3/3 contribution (Statistical uncertainty is negligible).

Axis error includes +- 3/3 contribution (Statistical uncertainty is negligible).

More…

Coupled channel analysis of anti-p p annihilation into pi0 pi0 pi0, pi0 eta eta and pi0 pi0 eta

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 355 (1995) 425-432, 1995.
Inspire Record 406130 DOI 10.17182/hepdata.28523

We confirm the existence of the two I G ( J PC ) = 0 + (0 ++ ) resonances f 0 (1370) and f 0 (1500) reported by us in earlier analyses. The analysis presented here couples the final states π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη of p p annihilation at rest. It is based on a 3 × 3 K -matrix. We find masses and widths of M = (1390±30) MeV, Γ = (380±80) MeV; and M = (1500±10) MeV, Γ = (154 ± 30) MeV, respectively. The product branching ratios for the production and decay into π 0 π 0 and ηη of the f 0 (1500) are (1.27 ± 0.33) · 10 −3 and (0.60 ± 0.17) · 10 −3 , respectively.

1 data table

No description provided.


E decay to eta pi pi in anti-p p annihilation at rest

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 358 (1995) 389-398, 1995.
Inspire Record 407517 DOI 10.17182/hepdata.28511

We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.

1 data table

Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.