We report a study of the processes e+e- -> eta gamma and e+e- -> etaprime gamma at a center-of-mass energy of 10.58 GeV, using a 232 fb^-1 data sample collected with the BABAR detector at the PEP-II collider at SLAC. We observe 20+6-5 eta gamma and 50+8-7 etaprime gamma events over small backgrounds, and measure the cross sections sigma(e+e- -> eta gamma) =4.5+1.2-1.1(stat)+-0.3(sys) fb and sigma(e+e- -> etaprime gamma)=5.4+-0.8(stat)+-0.3(sys) fb. The corresponding transition form factors at q^2 = 112 GeV^2 are q^2|F_eta(q^2)|=0.229+-0.030+-0.008 GeV, and q^2|F_etaprime(q^2)|=0.251+-0.019+-0.008 GeV, respectively.
Measured cross sections.
Undressed cross sections calculated by applying a 7.5 +- 0.2 PCT correction for vacuum polarization.
Transition form factors at Q**2 = 112 GeV**2.
Emission source functions are extracted from correlation functions constructed from charged pions produced at mid-rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV. The source parameters extracted from these functions at low k_T, give first indications of a long tail for the pion emission source. The source extension cannot be explained solely by simple kinematic considerations. The possible role of a halo of secondary pions from resonance emissions is explored.
Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.
Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.
Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
We present a measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV which uses events with an inclusive signature of significant missing transverse energy and jets. This is the first measurement which makes no explicit lepton identification requirements, so that sensitivity to W --> tau nu decays is maintained. Heavy flavor jets from top quark decay are identified with a secondary vertex tagging algorithm. From 311 pb-1 of data collected by the Collider Detector at Fermilab we measure a production cross section of 5.8 +/- 1.2(stat.)+0.9_-0.7(syst.) pb for a top quark mass of 178 GeV/c2, in agreement with previous determinations and standard model predictions.
TTBAR production cross section.
The proton-nucleon cross section ratio $R=Br(\Upsilon\to l^+l^-) d\sigma(\Upsilon)/dy|_{y=0} / {\sigma(J/\psi)}$ has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon cms energy of sqrt{s}=41.6 GeV. The combined results for the Upsilon decay channels Upsilon $\to e^+e^-$ and Upsilon $\to\mu^+\mu^-$ yield a ratio $R=(9.0 \pm 2.1) 10^{-6}$. The corresponding Upsilon production cross section per nucleon at mid-rapidity (y=0) has been determined to be $Br(\Upsilon\to{}l^+l^-) {d\sigma(\Upsilon)/dy}|_{y=0}= 4.5 \pm 1.1 $ pb/nucleon.
Ratio of the UPSILON production cross section to the total J/PSI production cross section in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.
UPSILON production cross section at midrapidity in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> K+ K- 2PI+ 2PI- as measured with the ISR data. Errors are statistical only.
The cross sections for charged and neutral current deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb^-1 at sqrt(s) = 318 GeV, are given for both e^+p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q^2 > 200 GeV^2 . The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma^CC (P_e = -1) = 7.4 +/- 3.9 (stat.) +/- 1.2 (syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model.
Total cross sections for the E+ P CC DIS at Q**2 > 200 GeV for the two different longitudinal positron polarizations and extrapolated with a linear fit to a polarization of -1.0 (including earlier unpolarized data).
E+ P CC DIS cross section as a function of Q**2.
E+ P CC DIS cross section as a function of X.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Inclusive transverse momentum spectra of eta mesons have been measured within p_T = 2-10 GeV/c at mid-rapidity by the PHENIX experiment in Au+Au collisions at sqrt(s_NN) = 200 GeV. In central Au+Au the eta yields are significantly suppressed compared to peripheral Au+Au, d+Au and p+p yields scaled by the corresponding number of nucleon-nucleon collisions. The magnitude, centrality and p_T dependence of the suppression is common, within errors, for eta and pi^0. The ratio of eta to pi^0 spectra at high p_T amounts to 0.40 < R_eta/pi^0 < 0.48 for the three systems in agreement with the world average measured in hadronic and nuclear reactions and, at large scaled momentum, in e^+e^- collisions.
Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.
Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.
Nuclear modification factors for $\eta$ in Au+Au centralities.
Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.527, 1.577 and 1.627 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.677, 1.728 and 1.779 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.829, 1.879 and 1.930 GeV. The errors shown are combined statistical and systematic.