Production of multi-strange baryons and antibaryons is expected to be a useful indicator in the search for Quark-Gluon Plasma formation. Production of Ξ − and Ξ − has been observed for the first time in ultra-relativistic heavy ion interactions by the WA85 Experiment. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. Preliminary ratios of Ξ/Ξ production in sulphur-tungsten and proton-tungsten interactions are also presented.
PRODUCTION AT CENTRAL RAPIDITY. 123 XI- AND 53 XIBAR+ CANDIDATES.
PRODUCTION AT CENTRAL RAPIDITY. 82 XI- AND 22 XIBAR+ CANDIDATES.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
This paper presents and contrasts features of the inelastic nuclear reactions of 200 GeV/nucleon 16 O and 32 S ions with emulsion nuclei. Both the multiplicities of shower particles and the extent of target fragmentation have been studied for varying degress of disruption of the projectile nuclei. The results may be interpreted within a simple geometrical model. In particular the rapidity distributions of those events which exhibit complete projectile break-up without any overt sign of low-energy target fragmentation have been determined. The interaction of secondary projectile fragments of charge two or more issuing from oxygen interactions were also studied and the mean free paths in emulsion of the primary 16 O and 32 S ions and all such fragments have been compared to those predicted by a simple Glauber model.
No description provided.
No description provided.
No description provided.
The OPAL detector at LEP is used to measure the branching ratio of theZ0 into invisible particles by measuring the cross section of single photon events ine+e− collisions at centre-of-mass energies near theZ0 resonance. In a data sample of 5.3 pb−1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisibleZ0 decay. With this data we determine theZ0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.
No description provided.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
Production of Ξ − and Ξ − has been observed for the first time in heavy ion interactions by the WA85 Experiment. Multistrange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. The ratio of Ξ Ξ production, corrected for geometrical acceptances and reconstruction efficiencies, is 0.39 ± 0.07 for sulphur-tungsten interactions in the central rapidity interval 2.3< Y lab <3.0 and p T >1.1 GeV/ c .
No description provided.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
No description provided.
No description provided.