Evidence for a narrow state decaying into an F meson and a photon has been obtained in e+e− annihilation events at 29-GeV c.m. energy. This state lies 139.5 ± 8.3(stat.) ± 9.7(syst.) MeV above the F-meson mass and is consistent with the expected F* meson. The F mesons are identified by a peak in the K+K−Kπ± mass at 1.948±0.028±0.010 GeV.
DATA REQUESTED FROM AUTHORS.
IN (K+K-PI+) THE AUTHORS INCLUDE OTHER DECAY MODES SUCH AS (AK*0 K+),(PHI PI+),(K+ K- PI+,PI0),(K+ K- MU+ NU) WHICH CANNOT BE RESOLVED.
Correlations in rapidity space are presented for identified π± and K± in e+e− annihilation at 29-GeV c.m. energy. Short-range KK correlations indicate local flavor compensation in the hadronization process. Long-range KK and ππ correlations prove that the initial partons carry flavor. In addition, we observe significant Kπ correlations as a result of heavy-quark decays.
No description provided.
Proton production in e+e− annihilation at 29 GeV has been studied with the time projection chamber. Measurements of the dependence of proton fractions on momentum, transverse momentum with respect to the jet axis, hadron multiplicity, and event sphericity are reported. Our results are consistent with the assumption that primary baryons and mesons have similar production spectra, and indicate that protons provide more direct probes of underlying fragmentation phenomena than do pions.
No description provided.
We have measured the inclusive prompt electron cross section over a wide momentum range (P>0.5 GeV/c) with the PEP-4 TPC detector. The semielectronic branching fractions of thec andb quarks are (9.1±0.9 (stat.)±1.3 (syst.))% and (11.0±1.8±1.0)%, respectively. Theb quark fragmentation function peaks at highz with 〈zb〉=0.74±0.05±0.03. The axial couplings to the neutral current areac=2.3±1.4±1.0 for thec quark andab=−2.0±1.9±0.5 for theb quark.
No description provided.
No description provided.
No description provided.
Antineutrino interactions in BEBC are compared to look for differences between the differential cross sections per nucleon in neon and in deuterium. The identical geometries, beam spectra and muon identification criteria and acceptances allow comparison with very small systematic errors. The results are compared in detail with μ and e scattering data from EMC and SLAC. We find no rise in the ratio d σ/ d x ( ν Ne )/σ/ d x ( ν D 2 ) at low x , independent of Q 2 up to Q 2 ∼ 14 GeV 2 .
VALUES OF Q**2 IN THIS TABLE ARE :- 1.07,2.59,4.33,6.14,7.67,8.28,6.35 (FOR ALL Q**2) AND :-,7.9,9.5,11.5,13.2,13.9,11.6 (FOR Q**2 > 4.5 ).
Production of φ mesons in e+e− annihilation at a center-of-mass energy of 29 GeV has been observed with the time-projection chamber detector at the PEP storage ring. The φ production rate has been measured in the energy range 0.075<x<0.55 (x=2Eφs), giving 0.077±0.012(stat)±0.016(syst) φ's per event. The average value of pt2 relative to the thrust axis is 1.0±0.4 (GeV/c)2.
No description provided.
EXTRAPOLAATION TO ALL X USES LUND MONTE CARLO PREDICTIONS.
ERRORS ARE BOTH STATISTICAL AND SYSTEMATIC. PT IS MEASURED RELATIVE TO THE EVENT THRUST AXIS, AND IS FOUND TO HAVE A MEAN VALUE OF 1.0 +- 0.4 GEV.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.
The inclusive production cross sections and mean multiplicities of π±, K±, p, and p¯ in e+e− annihilation at a c.m. energy of 29 GeV have been measured with the time-projection chamber at PEP, using ionization energy loss to separate particle types. On average, 10.7±0.6 π±, 1.35±0.13 K±, and 0.60±0.08 p,p¯ are contained in an annihilation event. The fraction of pions among final-state particles decreases from over 95% at 0.3 GeV/c momentum to about 60% at high momentum; the kaon and proton fractions rise correspondingly.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.
No description provided.