Date

Collaboration Reset

Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

531 data tables match query

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.

More…

First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction.

The CLAS collaboration Bradford, R.K. ; Schumacher, R.A. ; Adams, G. ; et al.
Phys.Rev.C 75 (2007) 035205, 2007.
Inspire Record 732402 DOI 10.17182/hepdata.31496

Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

34 data tables match query

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.

More…

Exclusive ${\pi}^0$ electroproduction at $W>2$ GeV with CLAS

The CLAS collaboration Bedlinskiy, I. ; Kubarovsky, V. ; Niccolai, S. ; et al.
Phys.Rev.C 90 (2014) 025205, 2014.
Inspire Record 1294143 DOI 10.17182/hepdata.64122

Exclusive neutral-pion electroproduction ($ep\to e^\prime p^\prime \pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\pi$ and structure functions $\sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

18 data tables match query

The structure functions for Q**2 = 1.14 - 1.16 GeV**2 and XB = 0.131 - 0.133 as functions of t.

The structure functions for Q**2 = 1.38 GeV**2 and XB = 0.169 - 0.170 as functions of t.

The structure functions for Q**2 = 1.61 GeV**2 and XB = 0.186 - 0.187 as functions of t.

More…

Eta photoproduction on the proton for photon energies from 0.75-GeV to 1.95-GeV

The CLAS collaboration Dugger, M. ; Ritchie, B.G. ; Ball, J. ; et al.
Phys.Rev.Lett. 89 (2002) 222002, 2002.
Inspire Record 603904 DOI 10.17182/hepdata.19406

Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75  GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8  GeV couples to the ηN channel.

6 data tables match query

Cross sections for photon energies 0.775 to 0.925 GeV.

Cross sections for photon energies 0.975 to 1.125 GeV.

Cross sections for photon energies 1.175 to 1.325 GeV.

More…

Experimental study of exclusive H-2(e,e' p)n reaction mechanisms at high Q**2.

The CLAS collaboration Egiyan, K.S. ; Asryan, G. ; Gevorgyan, N. ; et al.
Phys.Rev.Lett. 98 (2007) 262502, 2007.
Inspire Record 741920 DOI 10.17182/hepdata.41751

The reaction $^2$H$(e,e^\prime p)n$ has been studied with full kinematic coverage for photon virtuality $1.75<Q^2<5.5$ GeV$^2$. Comparisons of experimental data with theory indicate that for very low values of neutron recoil momentum ($p_n<100$ MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For $100<p_n<750$ MeV/c proton-neutron rescattering dominates the cross section, while $\Delta$ production followed by the $N\Delta \to NN$ transition is the primary contribution at higher momenta.

4 data tables match query

Recoil neutron momentum distributions.

Recoil neutron angular distributions for neutron momenta in the range 400 to 600 MeV.

Recoil neutron angular distributions for neutron momenta in the range 200 to 300 MeV.

More…

Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

58 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.1 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.14 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.18 GeV.

More…

Exclusive rho0 meson electroproduction from hydrogen at CLAS.

The CLAS collaboration Hadjidakis, C. ; Guidal, M. ; Garcon, M. ; et al.
Phys.Lett.B 605 (2005) 256-264, 2005.
Inspire Record 655683 DOI 10.17182/hepdata.41881

The longitudinal and transverse components of the cross section for the $e p\to e^\prime p \rho^0$ reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of $x_B$ from 0.2 to 0.6 and of $Q^2$ from 1.5 to 3.0 GeV$^2$. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter.

5 data tables match query

The ratio of the longitudinal to transverse cross sections for two Q**2 regions.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.31.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.38.

More…

Measurement of e p --> e' p pi+ pi- and baryon resonance analysis.

The CLAS collaboration Ripani, M. ; Burkert, V.D. ; Mokeev, V. ; et al.
Phys.Rev.Lett. 91 (2003) 022002, 2003.
Inspire Record 600451 DOI 10.17182/hepdata.11116

The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.

84 data tables match query

Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

113 data tables match query

No description provided.

No description provided.

No description provided.

More…