Measurement of the proton and deuteron spin structure function g2 and asymmetry A2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 76 (1996) 587-591, 1996.
Inspire Record 400029 DOI 10.17182/hepdata.19584

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.

8 data tables

Proton data measured in the 4.5 degree spectrometer.

Proton data measured in the 7.0 degree spectrometer.

Deuteron data measured in the 4.5 degree spectrometer.

More…

A New measurement of the spin dependent structure function g1(x) of the deuteron

The Spin Muon collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 357 (1995) 248-254, 1995.
Inspire Record 397392 DOI 10.17182/hepdata.47847

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q 2 < 60 GeV 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

4 data tables

Results on the virtual photon deuteron asymmetry.

Results on the spin structure function of the deuteron.

Results on the spin structure function of the neutron.

More…

Measurement of the spin dependent structure function g1(x) of the deuteron.

The Spin Muon collaboration Adeva, B. ; Ahmad, S. ; Arvidson, A. ; et al.
Phys.Lett.B 302 (1993) 533-539, 1993.
Inspire Record 354911 DOI 10.17182/hepdata.28926

We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.

2 data tables

Virtual photon asymmetry A1.

Spin-dependent structure function G1.


Determination of the neutron spin structure function..

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.Lett. 71 (1993) 959-962, 1993.
Inspire Record 359353 DOI 10.17182/hepdata.19693

The spin structure function of the neutron g1n has been determined over the range 0.03<x<0.6 at an average Q2 of 2 (GeV/c)2 by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized He3 target at energies between 19 and 26 GeV. The integral of the neutron spin structure function is found to be F01g1n(x)dx=-0.022±0.011. Earlier reported proton results together with the Bjorken sum rule predict F01g1n(x)dx=-0.059±0.019.

2 data tables

No description provided.

Extrapolarity to full x range.


An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons.

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Nucl.Phys.B 328 (1989) 1, 1989.
Inspire Record 280143 DOI 10.17182/hepdata.49587

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured in the range 0.01<×<0.7. The spin dependent structure function g 1 ( x ) for the proton has been determined and, combining the data with earlier SLAC measurements, its integral over x found to be 0.126±0.010(stat.)±0.015(syst.), in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Biorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These integrals lead to the conclusion, in the naïve quark parton model, that the total quark spin constitutes a rather small fraction of the spin of the nucleon. Results are also presented on the asymmetries in inclusive hadron production which are consistent with the above picture.

7 data tables

THE MEAN Q**2 FOR EACH OF THE 10 VALUES OF X BELOW ARE 3.5,4.5,6.0, 8.010.3,12.9,15.2,18.0,22.5,29.5.

No description provided.

No description provided.

More…

A measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon proton scattering.

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Phys.Lett.B 206 (1988) 364, 1988.
Inspire Record 252744 DOI 10.17182/hepdata.29952

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01< x <0.7). The spin-dependent structure function g 1 ( x ) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

1 data table

THE AVERAGE VALUES OF Q**2 IN EACH X-BIN ARE AS FOLLOWS: X=0.015,Q2=3.5: X=0.025,Q2=4.5: X=0.035,Q2=6.0: X=0.050,Q2=8.0: X=0.078,Q2=10.3: X=0.124,Q2=12.9: X=0.175,Q2=15.2: X=0.248,Q2=18.0: X=0.344,Q2=22.5: X=0.466,Q2=29.5.