Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
Nucleon resonance production in the two-body reaction p + p → p + N ∗ has been studied at 24 GeV/ c incident momentum for angles from 12 to 117 mrad by measuring proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV.
No description provided.
Experimental results are presented on the excitation of the nucleon isobars N ∗ (1518) and N ∗ (1688) in proton-proton collisions at an incident momentum of 19.2 GeV/ c and in the range of four-momentum squared 0.6 ⩽7 z . sfnc ; t | ⩽ 5.8 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).