Date

Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

4 data tables

Bottom and charm hadron invariant yields as a function of $p_{T}$.

Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.

Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Centrality-dependent modification of jet-production rates in deuteron-gold collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 116 (2016) 122301, 2016.
Inspire Record 1393528 DOI 10.17182/hepdata.156988

$Au collisions at $\sqrt{s_{NN}}$=200 GeV recorded in 2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the $R=0.3$ anti-$k_{t}$ algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multi-wire proportional chambers, and the jet transverse momentum ($p_T$) spectra are corrected for the detector response. Spectra are reported for jets with $12<p_T<50$ GeV/$c$, within a pseudorapidity acceptance of $\left|\eta\right|<0.3$. The nuclear-modification factor ($R_{d{\rm Au}}$) values for 0\%--100\% $d $$Au events are found to be consistent with unity, constraining the role of initial state effects on jet production. However, the centrality-selected $R_{d{\rm Au}}$ values and central-to-peripheral ratios ($R_{\rm CP}$) show large, $p_T$-dependent deviations from unity, which challenge the conventional models that relate hard-process rates and soft-particle production in collisions involving nuclei. $Jet production rates are measured in $p $$ and $d

3 data tables

Measured anti-$k_T$, $R$ = 0.3 jet yields in $d$+Au collisions, and the measured and calculated jet cross section in $p$+$p$ collisions.

$R_{dAu}$ as a function of $p_T$.

$R_{CP}$ as a function of $p_T$.


Elastic pp scattering in the region of the coulomb interference at momenta 1.1 - 1.7 GeV/c

Vorob'ev, A.A. ; Denisov, A.S. ; Zalite, Yu.K. ; et al.
JETP Lett. 17 (1973) 108-110, 1973.
Inspire Record 1393129 DOI 10.17182/hepdata.39943

None

1 data table

REAL/IMAG FOR FORWARD AMPLITUDE DEDUCED FROM D(SIG)/DEKIN(P=3) IN THE COULOMB-NUCLEAR INTERFERENCE REGION.


Elastic $pp$ scattering at 1.45 BeV

Kruchinin, S.P. ; Mukhin, K.N. ; Romantseva, A.S. ; et al.
Sov.J.Nucl.Phys. 1 (1965) 225-229, 1965.
Inspire Record 1392861 DOI 10.17182/hepdata.54964

None

3 data tables

No description provided.


Absolute measurement of the elastic scattering of 100 and 200 MeV electrons by C$^{12}$

Afanas'ev, N.G. ; Kovalev, V.D. ; Omelaenko, A.S. ; et al.
Sov.J.Nucl.Phys. 5 (1967) 223-228, 1967.
Inspire Record 1392564 DOI 10.17182/hepdata.17308

None

2 data tables

No description provided.

No description provided.


Transmission regeneration of neutral kaons in hydrogen

Birulev, V.K. ; Genchev, V.I. ; Govorun, N.N. ; et al.
Sov.J.Nucl.Phys. 24 (1976) 390-396, 1976.
Inspire Record 1392573 DOI 10.17182/hepdata.19051

None

1 data table

No description provided.


Study of the e$^{+}$ e$^{–}$ → π$^{+}$π$^{–}$π$^{0}$ process in the energy range 1.05–2.00 GeV

Aul'chenko, V.M. ; Achasov, M.N. ; Barnyakov, A.Yu. ; et al.
J.Exp.Theor.Phys. 121 (2015) 27-34, 2015.
Inspire Record 1389908 DOI 10.17182/hepdata.151395

The cross section for the e$^{+}$ e$^{–}$ → π$^{+}$π$^{–}$π$^{0}$ process in the energy range 1.05–2.00 GeV has been measured using the data collected in the experiment with the Spherical Neutral Detector (SND) at the VEPP-2000 e$^{+}$ e$^{–}$ collider. The obtained results on the cross section are in good agreement with previous measurements by the SND at the VEPP-2M collider and BABAR, but have a better accuracy.

1 data table

The Born cross section of the process e+e- -> pi+pi-pi0.


Elastic scattering of 3.15 GeV/ c positive pions on protons at 180°

Savin, I.A. ; Vovenko, A.S. ; Gus'kov, B.N. ; et al.
Phys.Lett. 17 (1965) 68-69, 1965.
Inspire Record 1389652 DOI 10.17182/hepdata.30250

None

1 data table

No description provided.


Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.