A search for production of D*−'s using the decay chain D0π−, D0→K+π−, was carried out at the Brookhaven National Laboratory multiparticle spectrometer with a 16-GeV/c π− beam and a hydrogen target. At 95% confidence level the upper limits for the product of peripheral production cross section by branching ratio are 2.4 nb for inclusive D*− production and 1.3 nb for the exclusive channel π−p→D*−Λc.
UPPER LIMIT TO CROSS SECTIONS.
The Brookhaven Alternating Gradient Synchrotron polarized proton beam incident on a beryllium target was used for inclusive Λ production at beam momenta of 13.3 and 18.5 GeV/c. The beam polarization was transverse to the beam direction with magnitude 0.63 at 13.3 GeV/c and 0.40 at 18.5 GeV/c. The Λ polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power AN and spin transfer DNN of the Λ’s were both measured and compared with a hyperon-polarization model in which the polarization arises from a Thomas-precession effect. There is good agreement with its predictions: AN=0 and DNN=0. In particular, our measurement of 〈DNN〉=-0.009±0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model’s use of SU(6) wave functions to form final-state hadrons from beam fragments and sea quarks. The presence of substantial KS samples at both beam momenta and Λ¯’s at 18.5 GeV/c prompted a measurement of their analyzing powers, which yielded AN(KS)=-0.094±0.012 at 13.3 GeV/c beam momentum and -0.076±0.015 at 18.5 GeV/c, and AN(Λ¯)=0.03±0.10.
No description provided.
No description provided.
No description provided.
From a large-statistics π+p experiment at 7.1 GeV/c, data are presented on the reactions π+p→ρ0Δ++(1238) and π+p→ωΔ++(1238). Cross sections, differential cross sections, and vector-meson single-density-matrix elements are presented and a general comparison of the production properties of the two reactions is given. In addition to (ρ,ω)Δ++(1238) production there is also strong evidence for production of a π+p enhancement with mass ∼ 1880 MeV, Γ∼200 MeV, and J≥72 produced in association with the ρ and ω resonances. Detailed properties of this structure are presented and its production mechanism is compared with that of the corresponding Δ(1238) reactions. This state is also observed in the reaction K+p→K*0(890)Δ++(1880) at 12.0 GeV/c, for which data are also presented.
No description provided.
We have measured the analyzing power in π+, π−, and KS0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high xF and also persist into the hard-scattering region for KS0 and π+. A zero value of the analyzing power was observed for π− production.
No description provided.
No description provided.
No description provided.
Ξ*− production was studied in the reaction K−+p→K+slow+X− at 5 GeV/c. The slow K+ was electronically detected, while the X− was observed as a missing mass, thus allowing for observation of all Ξ* independent of decay mode. The observed Ξ states were Ξ(1320), Ξ(1530), Ξ(1820), Ξ(2030), Ξ(2250), Ξ(2370), and Ξ(2500). These data establish and confirm the existence of Ξ(2250) and indicate a peculiar production-cross-section behavior for the Ξ*(2370).
UPPER LIMITS ARE 95 PCT CL.
Data are presented on the reactions π + n → ϱ 0 + X and K − p → K ∗0 + X at 6.0 and 7.3 GeV/ c , respectively. Comparisons are made between these two reactions and with other reactions involving inclusive vector meson production at different energies.
No description provided.
No description provided.
No description provided.
We observe a K−π+ state at 1786 ± 8 MeV with a width 95 ± 31 MeV in the reaction K−p→K−π+n at 6 GeV/c, from an experiment carried out at the Brookhaven National Laboratory multiparticle spectrometer.
ERROR INCLUDES SYSTEMATIC NORMALIZATION UNCERTAINTY.
We have performed a high-statistics experiment on the reaction π−p→K+K¯0π−n at 8.0 GeV/c. A Dalitz-plot analysis of the K+K¯0π− system finds that the D(1285) is a JPG=1++ state coupling predominantly to a δπ decay channel, while the E(1420) peak consists mostly of a JPG=0−+ wave with a substantial δπ decay mode. There is little evidence of a 1++ resonance at the E mass.
No description provided.
New data are presented, in the form of statistical tensors, for the reactions π + p → ( ϱ 0 , ω ) Δ ++ at 7.1 GeV/ c . Using these data, two types of model-dependent amplitude analyses have been performed. Both analyses, though based on different sets of assumptions, yield results which are in agreement with each other. The structure observed in the magnitudes and phases of the extracted amplitudes is consistent with that expected on the basis of currently accepted phenomenological ideas.
We present a measurement of the polarization and decay asymmetry parameters of the Ξ − inclusively produced in the forward direction in K − p interactions at 5 GeV/ c . The Ξ − decay parameters have been determined to be α Ξ = −0.405 ± 0.029 and Φ Ξ = 14.7° ± 16.0° from a sample of 20 865 events. A linear rise of the Ξ − polarization has been seen with respect to the transverse momentum of the Ξ − , reaching a maximum of 49 ± 4% at P ⊥ ∼ 0.50 GeV/ c . The value of α Ξ is consistent with the world average prior to 1975, but below the value measured by two recent experiments.