Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Deeply Virtual Compton Scattering and its Beam Charge Asymmetry in $e^\pm p$ Collisions at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Phys.Lett.B 681 (2009) 391-399, 2009.
Inspire Record 827347 DOI 10.17182/hepdata.54512

A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are discussed in the context of two different models, one based on generalised parton distributions and one based on the dipole approach.

11 data tables

The DVCS cross section as a function of Q**2.

The DVCS cross section as a function of W.

The DVCS cross section as a function of W for three different Q**2 regions.

More…

Measurement of the tau polarisation at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 20 (2001) 401-430, 2001.
Inspire Record 555653 DOI 10.17182/hepdata.49751

The polarisation of $\tau$'s produced in Z decay is measured using 160 pb$^{-1}$ of data accumulated at LEP by the ALEPH detector between 1990 and 1995. The variation of the polarisation with polar angle yields the two parameters ${\cal A}_e = 0.1504 \pm 0.0068 $ and ${\cal A}_{\tau} = 0.1451 \pm 0.0059$ which are consistent with the hypothesis of $e$-$\tau$ universality. Assuming universality, the value ${\cal A}_{e{-}\tau} = 0.1474 \pm 0.0045$ is obtained from which the effective weak mixing angle $\sin^2 {\theta_{\mathrm{W}}^{\mathrm{eff}}} =0.23147 \pm 0.00057 $ is derived.

1 data table

No description provided.


An improved direct measurement of leptonic coupling asymmetries with polarized Z bosons.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 86 (2001) 1162-1166, 2001.
Inspire Record 534735 DOI 10.17182/hepdata.41720

We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.

1 data table

No description provided.


Measurement of A(c) with charmed mesons at SLD.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, Toshinori ; et al.
Phys.Rev.D 63 (2001) 032005, 2001.
Inspire Record 533573 DOI 10.17182/hepdata.41721

We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$

1 data table

CONST(NAME=A_C) is connected with the forward-backward asymmetry by following way: ASYM(NAME=FB) = ABS(P_e)*CONST(NAME=A_C)*2z/(1 + z**2), where z = cos(theta), theta is the polar angle of the outgoing fermion relative to the incident electron, P_e is the longitudinal polarization of the electron beam. Two values for constant A_c were obtained using two different c-quark tagging methods: exclusive charmed-meson reconstruction (C=EXCLUSIVE) and inclusive soft-pion analysis (C=SOFT_PIONS).


A high-precision measurement of the left-right Z boson cross-section asymmetry.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, T. ; et al.
Phys.Rev.Lett. 84 (2000) 5945-5949, 2000.
Inspire Record 526448 DOI 10.17182/hepdata.35323

We present a measurement of the left-right cross-section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement includes the final data taken with the SLD detector at the SLAC Linear Collider (SLC) during the period 1996-1998. Using a sample of 383,487 Z decays collected during the 1996-1998 runs we measure the pole-value of the asymmetry, ALR0, to be 0.15056+-0.00239 which is equivalent to an effective weak mixing angle of sin2th(eff) = 0.23107+-0.00030. Our result for the complete 1992-1998 dataset comprising 537 thousand Z decays is sin2th(eff) = 0.23097+-0.00027.

6 data tables

The observed, corrected asymmetry measurement using the 1997-98 data sets.

The observed, corrected asymmetry measurement using the 1996 data sets.

The pole asymmetry for the 1997-98 data sets.

More…

Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

14 data tables

Hadronic cross section measured with the 1993 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity).

Hadronic cross section measured with the 1994 data. Additional systematic error of 0.11 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

Hadronic cross section measured with the 1995 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

More…

A precise measurement of the tau polarisation at LEP-1.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 585-611, 2000.
Inspire Record 511443 DOI 10.17182/hepdata.49001

The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in

2 data tables

The errors are statistical and systematic combined in quadrature.

No description provided.


Measurement of the strange quark forward-backward asymmetry around the Z0 peak.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 613-631, 2000.
Inspire Record 509441 DOI 10.17182/hepdata.49013

A precise measurement of the strange quark forward-backward asymmetry used 3.2M multihadronic events around the Z$^0$peak collected by the DELPHI experiment from 1

2 data tables

No description provided.

Parity violating coupling, COUPLING(NAME=A_S) = (2*V_S*A_S)/(V_S**2+A_S**2).


Measurement of the forward backward asymmetry of c and b quarks at the Z pole using reconstructed D mesons.

The DELPHI collaboration Abreu, P. ; Adye, T. ; Adzic, P. ; et al.
Eur.Phys.J.C 10 (1999) 219-237, 1999.
Inspire Record 495464 DOI 10.17182/hepdata.49295

A measurement of the forward--backward asymmetry of $e^{+}e^{-} \to c\bar{c}$ and $e^{+}e^{-} \to b\bar{b}$ on the $Z$ resonance is performed using about 3.5 million hadronic $Z$ decays collected by the DELPHI detector at LEP in the years 1992 to 1995. The heavy quark is tagged by the exclusive reconstruction of several $D$ meson decay modes. The forward--backward asymmetries for $c$ and $b$ quarks at the $Z$ resonance are determined to be: \[ \renewcommand{\arraystretch}{1.6} \begin{array}{rcr@{}l} \Afbc(\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0659 \pm 0.0094 (stat) \pm 0.0035 (syst) \Afbb (\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0762 \pm 0.0194 (stat) \pm 0.0085 (syst) \Afbc(\sqrt{s} = 89.434 {\rm GeV}) &=&-&0.0496 \pm 0.0368 (stat) \pm 0.0053 (syst) \Afbb(\sqrt{s} = 89.434 {\rm GeV}) &=& &0.0567 \pm 0.0756 (stat) \pm 0.0117 (syst) \Afbc(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.1180 \pm 0.0318 (stat) \pm 0.0062 (syst) \Afbb(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.0882 \pm 0.0633 (stat) \pm 0.0122 (syst) \end{array} \] The combination of these results leads to an effective electroweak mixing angle of: SINEFF = 0.2332 \pm 0.0016

1 data table

No description provided.