The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.
The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .
Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.
Form a sample of about 75000 τ decays measured in the ALEPH detector, 1-prong charged kaon decays are identified by the dE / dx measurement in the central detector. The resulting branching ratios for the inclusive and exclusive modes are: B ( τ → ν τ K − ≥ 0 π 0 ≥ 0 K 0 ) = (1.60±0.07±0.12)%, B ( τ → ν τ K − = (0.64±0.05±0.05)%, B ( τ → ν τ − π 0 = (0.53±0.05±0.07)% and B ( τ → ν τ K − π 0 π 0 ) = (0.04±0.03±0.02)%. Exclusive modes are corrected for measured K L 0 production. The rate for τ → ν τ K − agrees well with the prediction based on τ - μ universality.
Invariant mass distribution of the $K\pi^0$ final state, as obtained from a $dE/dx$ fit in each mass bin. The numbers have been read from the plot in the paper, with the errors simply set to zero if they are smaller than the point size.
Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.
Sphericity distribution.
Sphericity distribution.
Aplanarity distribution.