Measurement of inclusive D/s+- photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 481 (2000) 213-227, 2000.
Inspire Record 524912 DOI 10.17182/hepdata.47017

The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.

3 data tables

The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.

The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.

The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.


Measurement of inclusive prompt photon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 472 (2000) 175-188, 2000.
Inspire Record 508908 DOI 10.17182/hepdata.43894

First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.

2 data tables

The differential cross section for inclusive photoproduction of isolated photons.

Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.


Forward pi0 meson production at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 462 (1999) 440-452, 1999.
Inspire Record 504022 DOI 10.17182/hepdata.43918

High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.

12 data tables

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

More…

Inclusive jet differential cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 342 (1995) 417-432, 1995.
Inspire Record 378838 DOI 10.17182/hepdata.45054

Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.

5 data tables

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

More…