The differential cross sections for K+d coherent, breakup, and charge-exchange scattering have been measured at several momenta in the interval 250-600 MeV/c. The data have been fitted using a partial-wave analysis. Assuming an s-wave description of I=1 scattering and using data from the coherent and charge-exchange channels, a description of I=0 K+−N scattering by a combination of s and p waves in a simple single-scattering impulse model has been attempted. The phase shifts obtained are unique up to the Fermi-Yang ambiguity, which can be removed by using existing polarization results at 600 MeV/c.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
None
No description provided.
No description provided.
We compare production of the low mass K π -resonances by K + and K − beams in the non-charge-exchange reactions K ± p → K 0 s π ± p at 10 GeV/ c . High statistics data, obtained with the same apparatus, allow extraction of the K ∗ (890) and K ∗ (1420) production amplitudes corresponding to unnatural and natural parity exchange in the t -channel. The NPE-part dominates in both charge states. Its t -dependence shows a strong crossover at t ≈ −0.3 (GeV/ c ) 2 for the K ∗ (1420). For the K ∗ (890) the crossover is weaker but it occurs at the same value of t . This behaviour can be explained by pomeron, f and ω Regge exchange contributions to the NPE amplitude. The UPE amplitudes agree, both in normalisation and t -dependence, with the expectations of π and B exchange as isolated from data for the charge exchange reaction K − p → (K − π + )n.
No description provided.
We present results for the total cross section of e + e − annihilation into two hadrons at 1.6 GeV: σ ππ = σ KK = (1.8 ± 1.1) × 10 -33 cm 2 .From these values we obtain the time-like electromagnetic form factors these mesons: | F π | 2 = 0.24 ± 0.14 and | F K | 2 = 0.46 ± 0.26.
No description provided.
None
SINGLE CHARGED PARTICLE MOMENTUM DISTRIBUTION.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The quasi-elastic cross-sectionsσeltot and dσ/dq2 for the reactions 1) νn → μ−p and 2)\(\overline v \) → μ+n have been measured by using the data of the ν Gargamelle collaboration. 687 ν events, candidates for reaction 1), and 476\(\overline v \) events, candidates for the reactions 2), have been used for the analysis. Because the ν and\(\overline v \) interactions are on nuclei, suitable corrections for nuclear effects have been taken into account. In the framework of the «usual»V −A theory, by assuming for the axial form factor the dipolar formFA(q2)=1.23/(1 +q2/MA/2)2, our data have been fitted to the differential cross-section dσ/dq2 integrated over the ν and\(\overline v \) energy spectra and to the total cross-sectionσeltot as a function of the ν,\(\overline v \) energy to determine the best value for the parameterMA.
Measured Quasi-Elastic total cross section.
The ωπ − mass spectrum, in the reaction π −p → ωπ − pat 11.2 GeV/ c , shows the production of the B − meson with a cross section of 27 ± 5 μb as well as a clear enhancement around 1670 MeV. In the differential cross section for B − production, there is a strong forward peak and a change of slope at t ' t 0.2 GeV 2 .
CORRECTED FOR BACKGROUND AND OMEGA TAILS.
No description provided.
ABS(D-WAVE/S-WAVE) = 0.4 +- 0.1 FOR B DECAY.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.