We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.
We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .
REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.
The reaction γp→; π + π − p in the energy range 4.1 to 6.2 GeV has been studied with a tagged photon beam incident on a liquid hydrogen target in the DESY one-meter streamer chamber. The reaction is analysed in terms of the longitudinal phase space (LPS) method. The one-pion-exchange model for Δ(1236) production and decay is examined. For the diffractive part of the LPS a dual model with pomeron exchange is investigated. In particular, the s -channel helicity conservation dual model of Dewey and Humpert describes the data well.
No description provided.
CORRECTED FOR LOSSES AT SMALL T (UNLIKE VALUES OF 'REF 1'). BACKGROUND SUBTRACTION ERROR HAS BEEN ADDED QUADRATICALLY TO THE STATISTICAL ERROR.
No description provided.
The target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reaction γ p → π + n has been measured at the Bonn 2.5 GeV electron synchrotron for a pion c.m. angle of 40° and γ energies between 0.5 and 2.2 GeV. Butanol was used as the target material. About 35% of the protons could be polarized using the dynamic-polarization method in a continuous-flow cryostat operating at 1°K and 25 kG. The π + mesons were detected in a magnetic-spectrometer system. Considerable structure in the asymmetry was observed.
Axis error includes +- 11/11 contribution.
A large solid angle detector has been used to observe π + π − π 0 events produced, at the ω energy, by electron-positron collisions in the ORSAY storage ring. From the ω excitation curve we have deduced: σ ( e + e − → ω 3 π ) = (180 ± 0.20) μ b, Γ = (9.1 ± 0.8) MeV and with B( ω → π + π − π 0 ) = 0.898 ± 0.045 we have calculated Γ e + e − = (0.76 ± 0. 08) keV and g 2 ω 4π = 18.4 ± 1.8 .
EXPERIMENTAL CROSS SECTION INCLUDING RADIATIVE EFFECTS.
FITTED CROSS SECTION AT OMEGA PEAK, RADIATIVELY CORRECTED.
Results are presented on an analysis of the reaction K + p → K ∗+ (890) p at 16 GeV/ c and compared with data at lower incident momenta and with corresponding results for the reaction K − p → K ∗− (890) p. It is found for both reactions that the energy dependence of the cross section exhibits a simple ( p − n lab behaviour.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.
We present the first results of an experiment at the CERN intersecting storage rings, which measures the total cross-section in proton-proton collisions. The equivalent laboratory momenta are 291, 496, 1068 and 1480 GeV/c. We have made a direct measurement of αT as the ratio between the total interaction rate and the machine luminosity. The present paper gives a detailed description of the experimental apparatus and of the analysis procedure. We find that αT increases by about 10% in the energy region studied.
No description provided.
Photoproduction of π−-mesons on deuteron has been studied in the first resonance region with an annihilation photon beam with adjustable peak energy (from 250 MeV to 400 MeV). A coincidence detection of both outgoing π−-meson and forward proton has been performed with a set of 9 multiwire proportional chambers (1700 wires) inside the gap of a spectrometer. The momentum of the second proton is computed from three-body kinematics; their distribution is found in excellent agreement with the spectator model, even at the top of the resonance. The differential cross-sections of π− have been measured from 100° to 180° (center of mass); they are in reasonable agreement with conventional multipole calculations and do not indicate an appreciable isotensor term.
No description provided.
No description provided.
No description provided.
Production and decay properties of the B-meson are studied in the reactions π±p→B±p at 11 GeV/c. Values for mass, width, total and differential cross-sections and spin density matrix elements are given. The spin and parity, and the helicity states in the B→πω decay, are analysed.
BREIT-WIGNER FIT WITH 30 PCT BACKGROUND SUBTRACTED AND CORRECTED FOR UNSEEN OMEGA DECAYS.
FOR <OMEGA PION> EVENTS IN THE B REGION (1.16 TO 1.32 GEV) WITHOUT SUBTRACTING BACKGROUND.
ASSUMING B HAS SPIN-PARITY OF 1+.
A sample of 43000 two-prong events obtained at a momomentum of 11.7 GeV/c is used to determine the cross-sections of the fitted channels, and to study the reaction π+p→π+pπ0. We investigate in particular the quasi-two-body channels π0Δ++ and ρ+p.
No description provided.
No description provided.
No description provided.